Skip to main content

Lenstra's calculation of GO (R π), and applications to Morse-Smale diffeomorphisms

Part III

Part of the Lecture Notes in Mathematics book series (LNM,volume 882)

Keywords

  • Exact Sequence
  • Natural Projection
  • Finite Order
  • Noetherian Ring
  • Grothendieck Group

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0092501
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-38789-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [A] Almkvist, G.: “The Grothendieck ring of endomorphisms”, J. Algebra 28 (1974), 375–388.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • [B1] Bass, H.: “Algebraic K-theory”, W. A. Benjamin, New York (1968).

    MATH  Google Scholar 

  • [B2]-: “The Dirichlet unit theorem, induced characters and Whitehead groups of finite groups”, Topology 4 (1966), 391–410.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • [B3] Bass, H.: “The Grothendieck group of the category of abelian group automorphisms of finite order”, Preprint, Columbia University (1979).

    Google Scholar 

  • [Br] Brumer, A.: “The class group of all cyclotomic integers”

    Google Scholar 

  • [CR] Curtis, C.—I. Reiner: “Representation theory of finite groups and associative algebras”, Interscience, New York (1962).

    MATH  Google Scholar 

  • [D] Diederichsen, F.-E.: “Über die Ausreduktion ganzzahliger Gruppen-darstellungen bei arithmetischer Äquivalenz”, Abh. Math. Sem. Univ. Hamburg 13 (1940), 357–412.

    CrossRef  MATH  Google Scholar 

  • [FS] Franks, J.—M. Shub: “The existence of Morse-Smale diffeomorphisms”, Topology (to appear).

    Google Scholar 

  • [G1] Grayson, D.: “The K-theory of endomorphisms”, J. Algebra 48 (1977), 439–446.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • [G2] Grayson, D.: “SK1 of an interesting principal ideal domain”, preprint, Columbia University.

    Google Scholar 

  • [K-O] Kurshan, R. P.—A. M. Odlyzko: “Values of cyclotomic polynomials at roots of unity”, preprint, Bell Laboratories, Muray Hill, New Jersey (1980).

    MATH  Google Scholar 

  • [L] Lenstra, H.: “Grothendieck groups of abelian group rings”, J. Pure and Applied Algebra (to appear)

    Google Scholar 

  • [M] Milnor, J.: “Introduction to algebraic K-theory. I”, Annals of Math. Studies, Princeton Univ. Press (1971).

    Google Scholar 

  • [Q] Quillen, D.: “Higher algebraic K-theory, I” Proc. Battelle Conf. Alg. K-theory, Springer Lecture Notes 341 (1973), 85–147.

    MathSciNet  MATH  Google Scholar 

  • [R1] Reiner, I.: “Topics in integral representation theory”, Springer LN 744 (1979), 1–143.

    MathSciNet  Google Scholar 

  • [R2] Reiner, I.: “On Diederichsen's formula for extensions of lattices”, preprint, Univ. of Illinois, Urbana, Illinois.

    Google Scholar 

  • [SS] Shub, M.—D. Sullivan: “Homology theory and dynamical systems”, Topology 14 (1975), 109–132.

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Bass, H. (1981). Lenstra's calculation of GO (R π), and applications to Morse-Smale diffeomorphisms. In: Roggenkamp, K.W. (eds) Integral Representations and Applications. Lecture Notes in Mathematics, vol 882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0092501

Download citation

  • DOI: https://doi.org/10.1007/BFb0092501

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10880-1

  • Online ISBN: 978-3-540-38789-3

  • eBook Packages: Springer Book Archive