Skip to main content

The class group à la Fröhlich

Part II

  • 345 Accesses

Part of the Lecture Notes in Mathematics book series (LNM,volume 882)

Keywords

  • Class Group
  • Galois Group
  • Irreducible Character
  • Maximal Order
  • Division Ring

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0092492
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-38789-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [CF] Cassels a. Fröhlich, “Algebraic Number Theory”. Academic Press, 1967

    Google Scholar 

  • [C-N] Cassou-Noguès, Quelques Théorèmes de Base Normale d'Entiers. Annales de l'institut Fourier de l'université de Grenoble 28 (1978), 1–33

    CrossRef  MATH  Google Scholar 

  • [CR] Curtis a. Reiner, “Representation theory of Finite Groups and Associative Algebras”. Interscience Publ. 1962

    Google Scholar 

  • [F1] Fröhlich, Locally free modules over arithmetic orders. Crelle J. 274/275 (1975), 112–124

    MathSciNet  MATH  Google Scholar 

  • [F2] Fröhlich, Arithmetic and Galois module structure for tame extensions. Crelle J. 286/287 (1976), 380–440

    MathSciNet  MATH  Google Scholar 

  • [F3] Fröhlich, Class groups, in particular Hermitian Class groups. To appear

    Google Scholar 

  • [F4] Fröhlich, Resolvents and trace form. Proc. Camb. Phil. Soc. 78 (1975), 185–210

    MathSciNet  CrossRef  MATH  Google Scholar 

  • [F5] Fröhlich, Galois module structure. In: Fröhlich, “Algebraic Number Fields”. Academic Press 1977

    Google Scholar 

  • [H] Hasse, Über p-adische Schiefkörper und ihre Bedeutung für die Arithmetik hyperkomplexer Zahlsysteme. Math. Ann. 104 (1931), 495–534

    MathSciNet  CrossRef  MATH  Google Scholar 

  • [Hu] Huppert, “Endliche Gruppen I”. Springer 1967

    Google Scholar 

  • [J] Jacobinski, Genera and decompositions of lattices over orders. Acta Math. 121 (1968), 1–29

    MathSciNet  CrossRef  MATH  Google Scholar 

  • [K] Kneser, Starke Approximation in algebraischen Gruppen I. Crelle J. 218 (1965), 190–203

    MathSciNet  MATH  Google Scholar 

  • [R] Reiner, “Maximal Orders”. Academic Press 1975

    Google Scholar 

  • [S] Serre, “Représentations Linéaires des Groupes Finis”. Hermann, 1967

    Google Scholar 

  • [Sw1] Swan, Induced representations and projective modules. Ann. of Math. 71 (1960), 552–578

    MathSciNet  CrossRef  MATH  Google Scholar 

  • [Sw2] Swan, Projective modules over group rings and maximal orders. Ann. of Math. 76 (1962), 55–61

    MathSciNet  CrossRef  MATH  Google Scholar 

  • [Sw3] Swan, Algebraic K-Theory. Springer LNM 76 (1968)

    Google Scholar 

  • [Sw4] Swan a. Evans, K-theory of finite groups and orders. Springer LNM 149 (1970)

    Google Scholar 

  • [T] Taylor's lecture at this conference.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Ritter, J. (1981). The class group à la Fröhlich. In: Roggenkamp, K.W. (eds) Integral Representations and Applications. Lecture Notes in Mathematics, vol 882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0092492

Download citation

  • DOI: https://doi.org/10.1007/BFb0092492

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10880-1

  • Online ISBN: 978-3-540-38789-3

  • eBook Packages: Springer Book Archive