Skip to main content

On the supercentre of a group and its ring theoretic generalization

Part I

Part of the Lecture Notes in Mathematics book series (LNM,volume 882)

Keywords

  • Conjugacy Class
  • Unit Group
  • Group Ring
  • Finite Index
  • Division Ring

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0092489
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-38789-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bovdi, A. A.: The periodic normal divisors of the multiplicative group ring; Sibirski Matem. Zh., 9 (1968), 495–498.

    MathSciNet  Google Scholar 

  2. Bovdi, A. A.: The periodic normal divisors of the multiplicative group ring II; Sibirski Matem. Zh., 11 (1970), 495–511.

    MathSciNet  Google Scholar 

  3. Herstein, I. N.: Conjugates in Division Rings; Proc. Amer. Math. Soc., 7 (1956), 1021–1022.

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Herstein, I. N.: Topics in Ring Theory; Univ. of Chicago Press, Chicago (1972).

    MATH  Google Scholar 

  5. Jacobson, N.: Structure of Rings; Amer. Math. Soc., Providence, R.I. (1968).

    MATH  Google Scholar 

  6. Sehgal, S. K.: Topics in Group Rings; Manuel Dekker, N.Y. (1978).

    MATH  Google Scholar 

  7. Williamson, A.: On the conjugacy classes in a group ring; Canad. Math. Bull., 21 (1978), 491–496.

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. Zassenhaus, Hans: Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Aquivalenz ganzzahliger Substitutionsgruppen; Hamb. Abh. 12 (1938), 276–288.

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Zassenhaus, Hans: The Theory of Groups, second edition; Chelsea Publishing Company, New York (1958).

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Sehgal, S.K., Zassenhaus, H. (1981). On the supercentre of a group and its ring theoretic generalization. In: Roggenkamp, K.W. (eds) Integral Representations and Applications. Lecture Notes in Mathematics, vol 882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0092489

Download citation

  • DOI: https://doi.org/10.1007/BFb0092489

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10880-1

  • Online ISBN: 978-3-540-38789-3

  • eBook Packages: Springer Book Archive