Skip to main content

Graham Higman's Thesis “Units in Group Rings”

Part I

Part of the Lecture Notes in Mathematics book series (LNM,volume 882)

Keywords

  • Finite Group
  • Unit Group
  • Group Algebra
  • Group Ring
  • Normalise Unit

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0092488
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-38789-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Albert, A. A., Structure of Algebras, Amer. Math. Soc., New York, 1939. Zbl. 23.199.

    CrossRef  MATH  Google Scholar 

  • Allen, P. J.; Hobby, C., A characterization of the units in Z[A4],J. Algebra, to appear.

    Google Scholar 

  • Al-Sohebani, A.A., On the units of certain group rings, Ph.D. thesis, Univ. of Birmingham, 1978.

    Google Scholar 

  • Berman, S. D., On certain properties of integral group rings. (Russian), Dokl. Akad. Nauk SSSR (N. S.) 91(1953), 7–9 MR 15-99.

    MathSciNet  Google Scholar 

  • Berman, S. D., On the equation xm=1 in an integral group ring. (Russian), Ukrain. Mat. Ž. 7(1955), 253–261. MR 17-1048.

    MathSciNet  Google Scholar 

  • Berman, S. D., On certain properties of group rings over the field of rational numbers. (Russian). Užgorod. Gos. Univ. Nauěn. Zep. Him. Fiz. Mat. 12(1955) 88–110. MR 20 #3920.

    MathSciNet  Google Scholar 

  • Berman, S. D., Representations of finite groups. (Russian), Algebra 1964, p. 83–122, Akad. Nauk SSSR Inst. Naučn. Informacii, Moscow, 1966-Itogi Nauki-Seriya Matematika. Alg. Top. Geom. 3. MR 25 #2973.

    Google Scholar 

  • Berman, S. D.; Rossa, A. R., Integral group rings of finite and periodic groups. (Russian), Algebra and Math. Logic: Studies in Algebra. (Russian), p. 44–53, Izdat. Kiev. Univ., Kiev, 1966. MR 35 #265.

    Google Scholar 

  • Blanchfield, R. C., Application of free differential calculus to the theory of groups, Senior thesis, Princeton Univ., 1949.

    Google Scholar 

  • Bourbaki, N., Algèbra Linéaire, Hermann, Paris, 1947. MR 9-406.

    MATH  Google Scholar 

  • Bovdi, A. A., Group Rings. (Textbook). (Russian), University publishers, Užgorod, 1974. Zbl. 339.16004.

    MATH  Google Scholar 

  • Brauer, R., Representations of finite groups, Lectures on Modern Mathematics, Vol. I, pp. 133–175, Wiley, New York, 1963. MR 31 #2314. Also in: Richard Brauer: Collected Papers, Vol. I–III, The MIT Press, Cambridge MA, 1980.

    MATH  Google Scholar 

  • Brummund, H., Über Gruppenringe mit einem Koeffizientenkőrper der Characteristik p, Dissertation, Műnster 1939, Emsdetten, Heinrich und J. Lechte, Műnster, 1939. Zbl. 22.119. F.d.M.65II,1136.

    MATH  Google Scholar 

  • Cliff, G. H; Sehgal, S. K.; Weiss, A. R., Units of integral group rings of metabelian groups, to appear.

    Google Scholar 

  • Cohn, J. A.; Livingstone, D. On groups of the order p3, Canad. J. Math. 15(1963), 622–624. MR 27 #3700.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Cohn, J. A.; Livingstone, D., On the structure of group algebras. I., Canad. J. Math. 17(1965), 583–593. MR 31 #3514.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Cohn, P. M., Generalization of a theorem of Magnus, Proc. London Math. Soc. (3)2(1952), 297–310. MR 14-532.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Coleman, D. B., Finite groups with isomorphic group algebras, Trans. Amer. Math. Soc. 105(1962), 1–8. MR 26 #191.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Curtis, C. W.; Reiner, I., Representation theory of finite groups and associative algebras, Interscience-Wiley, New York, 1962. MR 26 #2519.

    MATH  Google Scholar 

  • Dennis, R. K. The structure of the unit group of group rings, Ring theory, II, pp. 103–130, Dekker, New York, 1977. MR 56 #3047.

    Google Scholar 

  • Eichler, M. Über die Einheiten der Divisionsalgebren, Math. Ann. 114(1937), 635–654. Zbl. 17.244.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Farkas, D. R., Group rings: an annotated questionnaire, Comm. Algebra 8 (1980), 585–602.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Fox, R. H., Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2)57(1953), 547–560. MR 14-843.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Franz, W., Überdeckungen topologischer Komplexe mit hyperkomplexen Systemen, J. Reine Angew. Math. 173(1935), 174–184. Zbl. 12.127.

    MathSciNet  MATH  Google Scholar 

  • Franz, W., Über die Torsion einer Überdeckung, J. Reine Angew. Math. 173(1935), 245–254. Zbl. 12.127.

    MathSciNet  MATH  Google Scholar 

  • Franz, W., (review of Whitehead, J. H. C., Simplicial spaces, nuclei and m-groups), Zbl. Math. 22(1940), 407–408.

    Google Scholar 

  • Freudenthal, H., Der Einfluss der Fundamentalgruppe auf die Bettischen Gruppen, Ann. of Math. (2)47(1946), 274–316. MR 8-166.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Galovich, S.; Reiner, I.; Ullom, S., Class groups for integral representations of metacyclic groups, Mathematika 19(1972), 105–111. MT 48 #4087.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Gruenberg, K. W., Resolutions by relations, J. London Math. Soc. 35(1960), 481–494. MR 23 #A 3165.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Gruenberg, K. W., Some cohomological topics in group theory, Queen Mary College, London, 1967. MR 41 #3608.

    MATH  Google Scholar 

  • Gruenberg, K. W.; Roseblade, J. E., The augmentation terminals of certain locally finite groups, Canad. J. Math. 24(1972), 221–238. MR 45 #3538.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Higman, G., The units of group-rings, Proc. London Math. Soc. (2)46(1940), 231–248. MR 2-5. Zbl. 25.243. F.d.M. 66I, 104.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Higman, G. Units in group rings, D. Phil. thesis, Oxford Univ., 1940.

    Google Scholar 

  • Higman, G., (Review of Passman, Isomorphic groups and group rings), Math. Reviews 33(1967), 244.

    Google Scholar 

  • Hopf, H., Über die Bettischen Gruppen, die zu einer beliebigen Gruppe gehoren, Comment. Math. Helv. 17(1945), 39–79. MR 6-279.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Hughes, I.; Pearson, K. R., The group of units of the integral group ring ZS3, Canad. Math. Bull. 15(1972), 529–534. MR 48 #4089.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Jackson, D. A., On a problem in the theory of integral group rings, D. Phil. thesis, Oxford Univ., 1967/1968.

    Google Scholar 

  • Jackson, D. A., The groups of units of the integral group rings of finite metabelian and finite nilpotent groups, Quart. J. Math. Oxford Ser. (2)20(1969), 319–331. MR 40 #2766.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Kemperman, J. H. B., On complexes in a semigroup, Nederl. Akad. Wetensch. Proc. Ser. A. 59= Indag. Math. 18(1956), 247–254. MR 18-14, MR 19-13.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Lombardo-Radice, L., Intorno alle algebre legate ai gruppi di ordine finito. Nota 2a, Rend. Sem. Mat. Roma (4)3(1939), 239–256. MR 1-258. Zbl.23.103.

    MathSciNet  MATH  Google Scholar 

  • Lyndon, R. C., Cohomology theory of groups with a single defining relation, Ann. of Math. (2)52(1950), 650–665. MR 13-819.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Miyata, T., On the units of the integral group ring of a dihedral group, J. Math. Soc. Japan, to appear.

    Google Scholar 

  • Newman, M.; Taussky, O., On a generalization of the normal basis in abelian algebraic number fields, Comm. Pure Appl. Math. 9(1956), 85–91. MR 17-829.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Obayashi, T., Solvable groups with isomorphic group algebras, J. Math. Soc. Japan 18(1966), 394–397. MR 33 #5750.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Obayashi, T., Integral group rings of finite groups, Osaka J. Math. 7(1970), 253–266. MR 43 #2122.

    MathSciNet  MATH  Google Scholar 

  • Passman, D. S., Isomorphic groups and group rings, Pacific J. Math. 15(1965), 561–583. MR 33 #1381.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Passman, D. S., The Algebraic Structure of Group Rings, Wiley-Interscience, New York, 1977. Zbl.368.16003.

    MATH  Google Scholar 

  • Passman, D. S.; Smith, P. F., Units in integral group rings to appear. Abstract in: Abstracts Amer. Math. Soc. 1(1980), 280.

    Google Scholar 

  • Perlis, S.; Walker, G., Abelian group algebras of finite order, Trans. Amer. Math. Soc. 68(1950), 420–426. MR 11-638

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Polcino Milies, F. C., Anéis de Grupos, Instituto de Matemática e Estatistica, Univ. de São Paulo, São Paulo, 1976. Zbl.407.16008.

    MATH  Google Scholar 

  • Reidemeister, K., Überdeckungen von Komplexen, J. Reine Angew. Math. 173(1935), 164–173. Zbl.12.126.

    MathSciNet  MATH  Google Scholar 

  • Rham, G. de, Sur les complexes avec automorphismes, Comment. Math. Helv. 12(1940), 191–211. Zbl.22.408.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Roggenkamp, K. W., to appear.

    Google Scholar 

  • Rossa, A. R., On integral group rings of finite groups. (Russian), Tezicy Dokl. Soobšč. Užgorod. Gos. Univ. Ser. Fiz.-Mat. Nauk 1964, 4–5.

    Google Scholar 

  • Rudin, W.; Schneider, H., Idempotents in group rings, Duke Math. J. 31(1964), 585–602. MR 29 #5119.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Saksonov, A. I., Group rings of finite groups. I, Publ. Math. Debrecen 18(1971), 187–209. MR 46 #5425.

    MathSciNet  MATH  Google Scholar 

  • Sandling, R., The modular group rings of p-groups, Ph.D. thesis, Univ. of Chicago, 1969.

    Google Scholar 

  • Sandling, R., Note on the integral group ring problem, Math. Z. 124(1972), 255–258. MR 52 #3217.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Schilling, O., Einheitentheorie in rationalen hyperkomplexen Systemen, J. Reine Angew. Math. 175(1936), 246–251.

    MathSciNet  MATH  Google Scholar 

  • Schneider, H.; Weissglass, J., Group rings, semigroup rings and their radicals, J. Algebra 5(1967), 1–15, MR 35 #4317.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Schumann, H.-G., Über Moduln und Gruppenbilder, Math. Ann. 114(1937), 385–413. Zbl. 16.294.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Schumann, H.-G., Zum Beweis des Hauptidealsatzes, Abh. Math. Sem. Hansische Univ. 12(1937), 42–47. Zbl. 16.103.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Sehgal, S. K., On the isomorphism of integral group rings. II, Canad. J. Math. 21(1969), 1182–1188. MR 42 #392.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Sehgal, S. K., Topics in Group Rings, Marcel Dekker, New York, 1978. Zbl.411.16004.

    MATH  Google Scholar 

  • Sekiguchi, K., Units in integral group rings, Proceedings of the 12th Symposium on Ring Theory (Hokkaido Univ., Sapporo, 1979), pp. 39–50. Okayama Univ., Okayama, 1980.

    MATH  Google Scholar 

  • Speiser, A., Die Theorie der Gruppen von endlicher Ordnung. (Dritte Auflage?), Springer, Berlin, (1937?). Zbl.17.153.

    MATH  Google Scholar 

  • Strojnowski, A., A note on u.p. groups, Comm. Algebra 8 (1980), 231–234.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Takahashi, S., Some properties of the group ring over rational integers of a finite group, Notices Amer. Math. Soc. 12 (1965), 463.

    Google Scholar 

  • Taussky, O., Matrices of rational integers, Bull. Amer. Math. Soc. 66(1960), 327–345. MR 22 #10994.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Taussky-Todd, O., Olga Taussky-Todd, Number Theory and Algebra, pp. xxxiv–xlvi, Academic Press, New York, 1977, MR 58 #10227.

    Google Scholar 

  • Waerden, B. L. van der, Moderne Algebra II, Springer, Berlin, 1931. Zbl. 2.8.

    CrossRef  MATH  Google Scholar 

  • Whitcomb, A., The group ring problem, Ph.D. thesis, Univ. of Chicago, 1968.

    Google Scholar 

  • Whitehead, J. H. C., Simplicial spaces, nuclei and m-groups, Proc. London. Math. Soc. (2)45(1939), 243–327. Zbl.22.407. Also in: The mathematical works of J. H. C. Whitehead, Vol. II. Complexes and Manifolds, pp. 99–183, Pergamon Press, Oxford, 1962. MR 30 #4667b.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Zalesskiî, A. E.; Mihalev, A. V., Group rings. (Russian), Current problems in mathematics, Vol. 2 (Russian), pp. 5–118, Akad. Nauk SSSR Vsesojuz. Inst. Naucň. i Tehn. Informacii, Moscow, 1973. MR 54 #2723.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Sandling, R. (1981). Graham Higman's Thesis “Units in Group Rings”. In: Roggenkamp, K.W. (eds) Integral Representations and Applications. Lecture Notes in Mathematics, vol 882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0092488

Download citation

  • DOI: https://doi.org/10.1007/BFb0092488

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10880-1

  • Online ISBN: 978-3-540-38789-3

  • eBook Packages: Springer Book Archive