Skip to main content

Remarks on the history and applications of integral representations

Part I

  • 368 Accesses

Part of the Lecture Notes in Mathematics book series (LNM,volume 882)

Keywords

  • Integral Representation
  • Finite Group
  • Class Group
  • Galois Group
  • Group Ring

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0092486
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-38789-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Aeberli: Der Zusammenhang zwischen quaternären quadratischen Formen und Idealen Quaternionenringen, Comment. Math. Helv. 33 (1959), 212–239.

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. A. Albert: Structure of Algebras, American Mathematical Society, New York, 1939.

    MATH  CrossRef  Google Scholar 

  3. A. Albert and H. Hasse: A determination of all normal division algebras over an algebraic number field, Trans. Amer. Math. Soc. 34(1932), 722–726.

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. E. Artin: Zur Theorie der hyperkomplexen Zahlen, Abh. Math. Sem. Univ. Hamburg 5(1928), 251–260.

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. E. Artin: Arithmetik hyperkomplexen Zahlen, Abh. Math. Sem. Univ. Hamburg 5(1928), 261–289.

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. E. Ascher and A. Janner: Algebraic aspects of crystallography— Space groups as extensions, Helv. Phys. Acta 38(1965), 551–572.

    MathSciNet  MATH  Google Scholar 

  7. E. Ascher and A. Janner: Algebraic aspects of crystallography II. Non-primitive translations in space groups, Comm. Math. Phys. 11(1968), 138–167.

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. L. Auslander and M. Kuranishi: On the holonomy group of locally euclidean spaces, Ann. of Math. (2) 65(1957), 411–415.

    MathSciNet  MATH  CrossRef  Google Scholar 

  9. M. Auslander and O. Goldman: Maximal orders, Trans. Amer. Math. Soc. 97(1960), 1–24.

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. M. Auslander: Existence theorems for almost split sequences, Proc. Conf. on Ring Theory II (Norman, Okla.), Marcel Dekker, New York, 1977, 1–44.

    MATH  Google Scholar 

  11. M. Auslander: Preprojective lattices over orders over Dedekind domains, Oberwolfach Tagungsbericht 29/1980, 4.

    Google Scholar 

  12. M. Auslander and D. Rim: Ramification index and multiplicity, Ill. J. Math. 7(1963), 566–581.

    MathSciNet  MATH  Google Scholar 

  13. K. Bäckström: Orders with finitely many indecomposable lattices, dissertation, Chalmers University of Technology, Göteborg, 1972.

    Google Scholar 

  14. H. Bass: Finitistic dimension and a homological characterization of semi-primary rings, Trans. Amer. Math. Soc. 95(1960), 466–488.

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. H. Bass: Projective modules over algebras, Ann. of Math. (2) 73 (1961), 532–542.

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. H. Bass: Torsion free and projective modules, Trans. Amer. Math. Soc. 102(1962), 319–327.

    MathSciNet  MATH  CrossRef  Google Scholar 

  17. H. Bass: On the ubiquity of Gorenstein rings, Math. Z. 82(1963), 8–28.

    MathSciNet  MATH  CrossRef  Google Scholar 

  18. H. Bass: The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups, Topology 4(1966), 391–410.

    MathSciNet  MATH  CrossRef  Google Scholar 

  19. T. Berger and I. Reiner: The normal basis theorem, Amer. Math. Monthly 82(1975), 915–918.

    MathSciNet  MATH  CrossRef  Google Scholar 

  20. S. Berman and P. Gudivok: Indecomposable representations of finite groups over the ring of p-adic integers, Izv. Akad. Nauk SSSR, Ser. Mat. 28(1964), 875–910=Amer. Math. Soc. Transl. (2) 50(1966), 77–113.

    MathSciNet  MATH  Google Scholar 

  21. C. Bessenrodt: On blocks of finite lattice type, Arch. Math. (Basel) 33(1979/80), 334–337.

    MathSciNet  MATH  CrossRef  Google Scholar 

  22. A. Borel, S. Chowla, C. Herz, K. Iwasawa and J. P.-Serre: Seminar on complex multiplication, Springer Lect. Notes in Math. 21(1966).

    Google Scholar 

  23. Z. Borevič and D. Faddeev: Theory of homology in groups II, Vestnik Leningrad Univ. 14(1959), no. 7, 72–87.

    MathSciNet  Google Scholar 

  24. H. Brandt: Idealtheorie in Quaternionenalgebren, Math. Ann. 99 (1928), 1–29.

    MathSciNet  MATH  CrossRef  Google Scholar 

  25. H. Brandt: Idealtheorie in einer Dedekindschen Algebra, Jber. Deutsch. Math.-Verein. 37(1928), 5–7.

    MATH  Google Scholar 

  26. H. Brandt: Zur Idealtheorie Dedekindschen Algebren, Comment. Math. Helv. 2(1930), 13–17.

    MathSciNet  MATH  CrossRef  Google Scholar 

  27. H. Brandt: Zur Zahlentheorie der Quaternionen, Jber. Deutsch. Math.-Verein. 53(1943), 23–57.

    MathSciNet  MATH  Google Scholar 

  28. R. Brauer: On modular and p-adic representations of algebras, Proc. Nat. Acad. Sci. USA 25(1939), 252–258.

    MATH  CrossRef  Google Scholar 

  29. H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus: Crystallographic groups of four-dimensional space, John Wiley and Sons, New York, 1978.

    MATH  Google Scholar 

  30. A. Brumer: Structure of hereditary orders, Bull. Amer. Math. Soc. 69(1963), 721–724; addendum, ibid. 70(1964), 185.

    MathSciNet  MATH  CrossRef  Google Scholar 

  31. J. Brzezinski: Algebraic geometry of ternary quadratic forms and orders in quaternion algebras, preprint.

    Google Scholar 

  32. J. Burckhardt: Die Bewegungsgruppen der Kristallographie, second edition, Birkhäuser, Basel, 1966.

    MATH  CrossRef  Google Scholar 

  33. J. Burckhardt: Zur Geschichte der Entdeckung der 230 Raumgruppen, Arch. Hist. Exact Sci. 4(1967/68), 235–246.

    MathSciNet  MATH  CrossRef  Google Scholar 

  34. C. Bushnell and I. Reiner: Solomon's conjectures and the local functional equation for zeta functions of orders, Bull. Amer. Math. Soc. (New Series) 2(1980), 306–310.

    MathSciNet  MATH  CrossRef  Google Scholar 

  35. C. Bushnell and I. Reiner: Zeta functions of hereditary orders and integral group rings, Texas Tech Univ. Math. Series, to appear.

    Google Scholar 

  36. C. Bushnell and I. Reiner: Zeta functions of arithmetic orders and Solomon's conjectures, to appear.

    Google Scholar 

  37. M. Butler: The 2-adic representations of Klein's four group, Proc. Second Internat. Conf. Theory of Groups, Canberra, 1973, 197–203.

    Google Scholar 

  38. M. Butler: On the classification of local integral representations of finite abelian p-groups, Springer Lect. Notes Math. 488(1975), 54–71.

    CrossRef  Google Scholar 

  39. J. Cassels and A. Fröhlich (editors): Algebraic Number Theory, Thompson Book Company, Washington, 1967.

    MATH  Google Scholar 

  40. P. Cassou-Noguès: Quelques théorèmes de base normale d'entiers, Ann. Inst. Fourier (Grenoble) (3) 28(1978), 1–35.

    MathSciNet  MATH  CrossRef  Google Scholar 

  41. C. Chevalley: L'arithmétique dans les algèbres de matrices, Act. Sci. et Ind. 323, Hermann, Paris, 1936.

    MATH  Google Scholar 

  42. H. Cohn: A second course in number theory, John Wiley and Sons, New York, 1962. New edition, retitled Advanced number theory, Dover, New York, 1980.

    MATH  Google Scholar 

  43. S. Conlon: Decompositions induced from the Burnside algebra, J. Algebra 10(1968), 102–122; correcticns, ibid. 18(1971), 608.

    MathSciNet  MATH  CrossRef  Google Scholar 

  44. H. Coxeter: Integral Cayley numbers, Duke J. Math. 13(1946), 561–578.

    MathSciNet  MATH  CrossRef  Google Scholar 

  45. J. Cougnard: Un contre-exemple a une conjecture de J. Martinet, in A. Fröhlich (editor): Algebraic Number Fields, Academic Press, New York, 1977.

    Google Scholar 

  46. C. Curtis and I. Reiner: Representation theory of finite groups and associative algebras, Interscience, New York, 1962.

    MATH  Google Scholar 

  47. E. Dade: Some indecomposable group representations, Ann. of Math. (2) 77(1963), 406–412.

    MathSciNet  MATH  CrossRef  Google Scholar 

  48. E. Dade: The maximal finite groups of 4×4 integral matrices, Ill. J. Math. 9(1965), 99–122.

    MathSciNet  MATH  Google Scholar 

  49. E. Dade, O. Taussky and H. Zassenhaus: On the theory of orders, in particular on the semigroups of ideal classes and genera in an algebraic number field, Math. Ann. 148(1962), 31–64.

    MathSciNet  MATH  CrossRef  Google Scholar 

  50. R. Dedekind: Über die composition der quadratischen formen, Supplement X in [62]. P. Lejeune Dirichlet:.

    Google Scholar 

  51. R. Dedekind: Über die Anzahl der Ideal-Klassen in den verschiedenen Ordnungen eines endlichen Körpers, Festschrift der Technischen Hochschule in Braunschweig zur Säkularfeier des Geburtstages von C. F. Gauss, Braunschweig, 1877, 1–55.

    Google Scholar 

  52. R. Dedekind: Über eine Erweiterung der Symbols (A, B) in der Theorie der Moduln, Nachr. Königl. Gesell. Wiss. Göttingen Mathem.-phys. Klasse, 1895, 183–188.

    Google Scholar 

  53. M. Deuring: Algebren, second edition, Springer-Verlag, Berlin, 1968. (First edition appeared in 1935).

    MATH  CrossRef  Google Scholar 

  54. M. Deuring: Algebraische Begründung der komplexen Multiplikation, Abh. Math. Sem. Univ. Hamburg 16(1947), 32–47.

    MathSciNet  MATH  CrossRef  Google Scholar 

  55. M. Deuring: Die Struktur der elliptischen Funktionenkörper und die Klassenkörper der imaginär-quadratischen Körper, Math. Ann. 124(1952), 393–426.

    MathSciNet  MATH  CrossRef  Google Scholar 

  56. M. Deuring: Die Klassenkörper der komplexen Multiplikation, Enz. Math. Wiss., Band I-2, Heft 10, Teil II, Stuttgart, 1958.

    Google Scholar 

    Google Scholar 

  57. L. Dickson: Algebras and their arithmetics, Chicago, 1923.

    Google Scholar 

  58. L. Dickson: A new simple theory of hypercomplex integers, J. Math. Pures Appl. (9) 2 (1923) 281–326.

    MATH  Google Scholar 

  59. L. Dickson: Algebren und ihre Zahlentheorie, Orell-Füssli, Zürich, 1927.

    MATH  Google Scholar 

  60. F. Diederichsen: Über de Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Abh. Math. Sem. Univ. Hamburg 14 (1938), 357–412.

    MathSciNet  MATH  Google Scholar 

  61. E. Deiterich: Representation types of group rings over complete valuation rings, Oberwolfach Tagungsbericht 29/1980, 10–11.

    Google Scholar 

  62. P. Lejeune Dirichlet: Vorlesungen über Zahlentheorie, second edition, Vieweg und Sohn, Braunschweig, 1871.

    Google Scholar 

  63. A. Dress: On relative Grothendieck rings, Bull. Amer. Math. Soc. 75 (1969), 955–958.

    MathSciNet  MATH  CrossRef  Google Scholar 

  64. A. Dress: Vertices of integral representations, Math. Z. 114 (1970), 159–169.

    MathSciNet  MATH  CrossRef  Google Scholar 

  65. A. Dress: On integral and modular relative Grothendieck rings, multicopied notes of the Summer Open House for Algebraists, Aarhus University (1970), 85–108.

    Google Scholar 

  66. A. Dress: Contributions to the theory of induced representations, Springer Lect. Notes Math. 342 (1973) 183–240.

    MathSciNet  MATH  Google Scholar 

  67. A. Dress: Relative Grothendieckringe über semilokalen Dedekindringen, Surjektivität des Reductionshomomorphismus und ein Theorem von Swan, preprint.

    Google Scholar 

  68. Ju. Drozd: Adèles and intecral representations, Izv. Akad Nauk SSSR, Ser. Mat. 33 (1969), 1080–1088=Math. of USSR Izv. 3 (1969), 1019–1026.

    MathSciNet  Google Scholar 

  69. Ju. Drozd and A. Roiter: Commutative rings with a finite number of indecomposable integral representations, Izv. Akad Nauk USSR, Ser. Mat. 31 (1967), 783–798=Math. of USSR Izv. 1 (1967), 757–772.

    MathSciNet  MATH  Google Scholar 

  70. Ju. Drozd, V. Kiriĉenko and A. Roiter: On hereditary and Bass orders, Izv. Akad. Nauk SSSR, Ser. Mat. 31 (1967), 1415–1436=Math. of USSR Izv. 1 (1967), 1357–1376.

    MathSciNet  Google Scholar 

  71. L. DuPasquier, Vjschr. Naturforsch. Ges. Zürich 54 (1909), 116–148.

    Google Scholar 

  72. J. Durbin: Modern Algebra, John Wiley and Sons, New York, 1979.

    MATH  Google Scholar 

  73. H. Edwards: Fermat's Last Theorem, a genetic introduction to algebraic number theory, Springer-Verlag, New York, 1977.

    MATH  Google Scholar 

  74. M. Eichler: Über die Idealklassenzahl total definiter Quaternionenalgebren, Math. Z. 43 (1938), 102–109.

    MathSciNet  MATH  CrossRef  Google Scholar 

  75. M. Eichler: Über die Idealklassenzahl hyperkomplexen Zahlen, Math. Z. 43 (1938), 481–494.

    MathSciNet  MATH  CrossRef  Google Scholar 

  76. M. Eichler: Quadratische Formen und orthogonale Gruppen, Springer-Verlag, Berlin, 1952.

    MATH  CrossRef  Google Scholar 

  77. S. Epp: Submodules of Cayley algebras, J. Algebra 24 (1973) 104–126.

    MathSciNet  MATH  CrossRef  Google Scholar 

  78. D. Estes and G. Pall: Modules and rings in the Cayley algebra, J. Number Theory 1 (1969), 163–178.

    MathSciNet  MATH  CrossRef  Google Scholar 

  79. D. Faddeev: On the semigroup of genera in the theory of integer representations, Izv. Akad. Nauk SSSR, Ser. Mat. 28 (1964) 475–478=Amer. Math. Soc. Transl. (2) 64 (1967), 97–101.

    MathSciNet  Google Scholar 

  80. D. Faddeev: An introduction to the multiplicative theory of modules of integral representations, Trudy Mat. Inst. Steklov 80 (1965), 145–182=Proc. Steklov Inst. Math. 80 (1965), 164–210.

    MathSciNet  Google Scholar 

  81. D. Faddeev: Equivalence of systems of integer matrices, Izv. Akad. Nauk SSSR, Ser. Mat. 30 (1966), 449–454=Amer. Math. Soc. Transl. (2) 71 (1968), 43–48.

    MathSciNet  Google Scholar 

  82. R. Fossum: Maximal orders over Krull domains, J. Algebra 10 (1968), 321–332.

    MathSciNet  MATH  CrossRef  Google Scholar 

  83. R. Fossum: Injective modules over Krull orders, Math. Scand. 28 (1971), 233–246.

    MathSciNet  MATH  Google Scholar 

  84. T. Fossum: On symmetric orders and separable algebras, Trans. Amer. Math. Soc. 180 (1973), 301–314.

    MathSciNet  MATH  CrossRef  Google Scholar 

  85. G. Frobenius and L. Stickelberger: Über Gruppen von vetauschbaren Elementen, Crelle 86 (1879), 217–262.

    MathSciNet  MATH  Google Scholar 

  86. A. Fröhlich: Invariants for modules over commutative separable orders, Quart. J. Math. (2) 16 (1965), 193–232.

    MathSciNet  MATH  CrossRef  Google Scholar 

  87. A. Fröhlich: Some topics in the theory of module conductors, Oberwolfach Berichte 2 (1966), 59–83.

    MATH  Google Scholar 

  88. A. Fröhlich: Local fields, in [39].

    Google Scholar 

  89. A. Fröhlich: Artin root numbers and normal integral bases for quaternion fields, Invent. Math. 17 (1962), 143–166.

    MathSciNet  MATH  CrossRef  Google Scholar 

  90. A. Fröhlich: The Picard group of non-commutative rings, in particular of orders, Trans. Amer. Math. Soc. 180 (1973), 1–45.

    MathSciNet  MATH  CrossRef  Google Scholar 

  91. A. Fröhlich: Module invariants and root numbers for quaternion fields of degree l r Proc. Cambridge Phil. Soc. 76 (1974), 393–399.

    MathSciNet  MATH  CrossRef  Google Scholar 

  92. A. Fröhlich: Locally free modules over arithmetic orders, Crelle 274/275 (1975), 112–138.

    MathSciNet  MATH  Google Scholar 

  93. A. Fröhlich: A normal integral basis theorem, J. Algebra 39 (1976), 131–137.

    MathSciNet  MATH  CrossRef  Google Scholar 

  94. A. Fröhlich: Arithmetic and Galois module structure for tame extensions, Crelle 286/287 (1976), 380–440.

    MathSciNet  MATH  Google Scholar 

  95. A. Fröhlich (editor): Algebraic Number Fields, Academic Press, New York, 1977.

    Google Scholar 

  96. A. Fröhlich and J. Queyrut: On the functional equation of the Artin L-function for characters of real representations, Invent. Math. 14 (1971), 173–183.

    MathSciNet  MATH  CrossRef  Google Scholar 

  97. A. Fröhlich, I. Reiner and S. Ullom: Class groups and Picard groups of orders, Proc. London Math. Soc. (3) 29 (1974), 405–434.

    MathSciNet  MATH  CrossRef  Google Scholar 

  98. R. Fueter: Vorlesungen über die singulären Modules und die komplexe multiplication der elliptischen Funktionen I, II, Teubner, Leipzig, 1924 and 1927.

    MATH  Google Scholar 

  99. V. Galkin: σ-functions of some one-dimensional rings, Izv. Akad. Nauk SSSR, Ser. Math. 37 (1973), 3–19=Math. of USSR Izv. 7 (1973), 1–17.

    MathSciNet  MATH  Google Scholar 

  100. C. F. Gauss: Disquisitiones arithmeticae, Leipzig, 1801.

    Google Scholar 

  101. E. Green and I. Reiner: Integral representations and diagrams, Michigan Math. J. 25 (1978), 53–84.

    MathSciNet  MATH  CrossRef  Google Scholar 

  102. J. Green: Axiomatic representation theory for finite groups, J. Pure and Appl. Algebra 1 (1971), 41–77.

    MathSciNet  MATH  CrossRef  Google Scholar 

  103. W. Gustafson: Integral relative Grothendieck rings, J. Algebra 22 (1972), 461–479.

    MathSciNet  MATH  CrossRef  Google Scholar 

  104. W. Gustafson: On an induction theorem for relative Grothendieck groups, Proc. Amer. Math. Soc. 35 (1972), 26–30.

    MathSciNet  MATH  CrossRef  Google Scholar 

  105. W. Gustafson: The theory of relative Grothendieck rings, Springer Lect. Notes Math. 353 (1973), 95–112.

    MathSciNet  MATH  CrossRef  Google Scholar 

  106. M. Harada: Hereditary orders, Trans. Amer. Math. Soc. 107 (1963), 273–290.

    MathSciNet  MATH  CrossRef  Google Scholar 

  107. K. Hashimoto: On Brandt matrices associated with the positive definite quaternion hermitian forms, J. Fac. Sci. Univ. Tokyo (Sec. IA) 27 (1980), 227–245.

    MathSciNet  MATH  Google Scholar 

  108. K. Hashimoto: Some examples of integral definite quaternary quadratic forms with prime discriminant, Nagoya Math. J. 77 (1980), 167–175.

    MathSciNet  MATH  Google Scholar 

  109. H. Hasse: Neue Begründung der komplexen Multiplikation I, Crelle 157 (1927), 115–139; II, ibid. 165 (1931), 64–88.

    MathSciNet  MATH  Google Scholar 

  110. H. Hasse: Über p-adische Shiefkörper und ihre Bedeutung für die Arithmetik hyperkomplexen Zahlsysteme, Math. Ann. 104 (1931), 495–534.

    MathSciNet  MATH  CrossRef  Google Scholar 

  111. H. Hasse, R. Brauer and E. Noether: Beweis eines Hauptsatzes in der Theorie der Algebren, Crelle 167 (1932), 399–304.

    MathSciNet  MATH  Google Scholar 

  112. H. Hasse: History of class field theory, in [39].

    Google Scholar 

  113. A. Heller and I. Reiner: Representations of cyclic groups in rings of integers I, Ann. of Math. (2) 76 (1962), 73–92; II, ibid. (2) 77 (1963), 318–328.

    MathSciNet  MATH  CrossRef  Google Scholar 

  114. A. Heller and I. Reiner: Grothendieck groups of integral group rings, Ill. J. Math. 9 (1965), 349–359.

    MathSciNet  MATH  Google Scholar 

  115. K. Hey: Analytische Zahlentheorie in Systemen hyperkomplexer Zahlen, dissertation, Hamburg, 1929.

    Google Scholar 

  116. D. Higman: On orders in separable algebras, Canad. J. Math. 7, (1955), 509–515.

    MathSciNet  MATH  CrossRef  Google Scholar 

  117. G. Higman: The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231–248.

    MathSciNet  MATH  CrossRef  Google Scholar 

  118. D. Hilbert: Die Theorie der algebraischen Zahlkörper, Jber. Deutsch. Math.-Verein. 4 (1897), 175–546.

    Google Scholar 

  119. A. Hurwitz: Über die Zahlentheorie der Quaternionen, Nachr. Akad. Wiss. Göttingen 1896, 313–334.

    Google Scholar 

  120. A. Hurwitz: Vorlesungen über die Zahlentheorie der Quaternionen, Berlin, 1919.

    Google Scholar 

  121. H. Jacobinski: Über die Hauptordnung eines Körpers als Gruppenmodul, Crelle 213 (1963/64), 151–164.

    MathSciNet  MATH  Google Scholar 

  122. H. Jacobinski: On extensions of lattices, Michigan Math. J. 13 (1966), 471–475.

    MathSciNet  MATH  CrossRef  Google Scholar 

  123. H. Jacobinski: Sur les ordres commutatifs avec un nombre fini de réseaux indecomposables, Acta Math. 118 (1967), 1–31.

    MathSciNet  MATH  CrossRef  Google Scholar 

  124. H. Jacobinski: Über die Geschlecter von Gittern über Ordnungen, Crelle 230 (1968), 29–39.

    MathSciNet  MATH  Google Scholar 

  125. H. Jacobinski: Genera and decompositions of lattices over orders, Acta Math. 121 (1968), 1–29.

    MathSciNet  MATH  CrossRef  Google Scholar 

  126. H. Jacobinski: On embedding of lattices belonging to the same genus, Proc. Amer. Math. Soc. 24 (1970), 134–136.

    MathSciNet  MATH  CrossRef  Google Scholar 

  127. H. Jacobinski: Two remarks about hereditary orders, Proc. Amer. Math. Soc. 28 (1971), 1–8.

    MathSciNet  MATH  CrossRef  Google Scholar 

  128. N. Jacobson: Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo 7 (1958), 55–80.

    MathSciNet  MATH  CrossRef  Google Scholar 

  129. J.-R. Joly: Groupe de classes de certains ordres d'entiers algébrique, C. R. Acad. Sci. Paris (Ser. A) 266 (1968), 553–555.

    MathSciNet  MATH  Google Scholar 

  130. A. Jones: Groups with a finite number of indecomposable integral representations, Michigan Math. J. 10 (1963), 257–261.

    MathSciNet  MATH  CrossRef  Google Scholar 

  131. I. Kaplansky: Composition of binary quadratic forms, Studia Math. 31 (1968), 523–530.

    MathSciNet  MATH  Google Scholar 

  132. I. Kaplansky: Submodules of quaternion algebras, Proc. London Math. Soc. (3) 19 (1969), 219–232.

    MathSciNet  MATH  CrossRef  Google Scholar 

  133. J. Kirmse: Über die Darstellbarkeit natürlicher ganzen Zahlen als Summen von acht Quadraten und über ein mit diesem Problem zusammenhängendes nichtkommutatives und nichtassociatives Zahlensystem, Ber. Verh. Sächs. Akad. Wiss. Leipzig 76 (1924), 63–82.

    Google Scholar 

  134. J. Kirmse: Zur Darstellbarkeit natürlicher ganzer Zahlen als Summen von acht Quadreten, Ber. Vehr. Sächs. Akad. Wiss. Leipzig 80 (1928), 33–34.

    MATH  Google Scholar 

  135. S. Kuroda: Über den allgemeinen Spiegelungssatz für Galoissche Zahlkörper, J. Number Theory 2 (1970), 282–297.

    MathSciNet  MATH  CrossRef  Google Scholar 

  136. T. Lam: Induction theorems for Grothendieck groups and Whitehead groups of finite groups, Ann. Sci. École Norm. Sup. (4) 1 (1968), 91–148.

    MathSciNet  MATH  Google Scholar 

  137. P. Lamont: Arithmetics in Cayley's algebra, Proc. Glasgow Math. Assoc. 6 (1963), 99–106.

    MathSciNet  MATH  CrossRef  Google Scholar 

  138. C. Latimer and C. MacDuffee: A correspondence between classes of ideals and classes of matrices, Ann. of Math. (2) 34 (1933), 313–316.

    MathSciNet  MATH  CrossRef  Google Scholar 

  139. H. Lenstra: Grothendieck groups of abelian group rings, preprint.

    Google Scholar 

  140. H. Leopoldt: Zur Struktur der ℓ-Klassengruppe galoisscher Zahlkörper, Crelle 199 (1958), 165–174.

    MathSciNet  MATH  Google Scholar 

  141. H. Leopoldt: Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, Crelle 201 (1959), 119–149.

    MathSciNet  MATH  Google Scholar 

  142. R. Lipschitz: Untersuchungen über die summen von Quadraten, Bonn, 1886. French translation in J. Math. Pures et Appl. (4) 2 (1886), 393–439.

    Google Scholar 

  143. R. MacKenzie and J. Scheuneman: A number field without a relative integral basis, Amer. Math. Monthly 78 (1971), 882.

    MathSciNet  CrossRef  Google Scholar 

  144. S. MacLane: Homology, Springer-Verlag, Berlin, 1963.

    MATH  CrossRef  Google Scholar 

  145. K. Mahler: On ideals in the Cayley-Dickson algebra, Proc. Royal Irish Acad. (Ser. A) 48 (1943), 123–133.

    MathSciNet  MATH  Google Scholar 

  146. J. Martinet: Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier (Grenoble) 19 (1969), 1–80.

    MathSciNet  MATH  CrossRef  Google Scholar 

  147. J. Martinet: Modules sur l'algèbre du group quaternionien, Ann. Sci. École Norm. Sup. (4) 4 (1971), 399–408.

    MathSciNet  MATH  Google Scholar 

  148. J. Martinet: Sur les extensions à groupe de Galois quaternionien, C. R. Acad. Sci. Paris (Sér. A) 274 (1972), 933–935.

    MathSciNet  MATH  Google Scholar 

  149. D. Masser: Elliptic functions and transcendence, Springer Lect. Notes Math. 437 (1975).

    Google Scholar 

  150. K. Masuda: Application of the theory of the group of classes of projective modules to the existence problem of independent parameters of invariant, J. Math. Soc. Japan 20 (1968), 223–232.

    MathSciNet  MATH  CrossRef  Google Scholar 

  151. A. Matchett: Exact sequences for locally free class groups, preprint.

    Google Scholar 

  152. H. Mattson: A generalization of the Riemann-Roch theorem, Ill. J. Math. 5 (1961), 355–375.

    MathSciNet  MATH  Google Scholar 

  153. G. Maxwell: The crystallography of Coxeter groups, J. Algebra 35 (1975), 159–177.

    MathSciNet  MATH  CrossRef  Google Scholar 

  154. J. Milnor: Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426.

    MathSciNet  MATH  CrossRef  Google Scholar 

  155. Y. Miyata: On a characterization of the first ramification group as the vertex of the ring of integers, Nagoya Math. J. 43 (1971), 151–156.

    MathSciNet  MATH  Google Scholar 

  156. Y. Miyata: On the module structure of the ring of all integers of a p-adic number field, Nagoya Math. J. 54 (1974), 53–59.

    MathSciNet  MATH  Google Scholar 

  157. L. Nazarova: Unimodular representations of the four group, Dokl. Akad. Nauk SSSR 140 (1961), 1011–1014=Sov. Math. Dokl. 2 (1961), 1304–1307.

    MathSciNet  Google Scholar 

  158. A. Nelson: Module resolvents, preprint.

    Google Scholar 

  159. M. Newman: Integral matrices, Academic Press, New York, 1972.

    MATH  Google Scholar 

  160. G. Nipp: Quaternion orders associated with ternary lattices, Pac. J. Math. 53 (1974), 525–537.

    MathSciNet  CrossRef  Google Scholar 

  161. E. Noether: Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1916), 221–229.

    MathSciNet  MATH  CrossRef  Google Scholar 

  162. E. Noether: Normalbasis bei Körpern ohne höhere Verzweigung, Crelle 167 (1932), 147–152.

    MathSciNet  MATH  Google Scholar 

  163. T. Obayashi: On the Grothendieck ring of an abelian p-group, Nagoya Math. J. 26 (1966), 101–113.

    MathSciNet  MATH  Google Scholar 

  164. G. Pall: On generalized quaternions, Trans. Amer. Math. Soc. 59 (1946), 280–332.

    MathSciNet  MATH  CrossRef  Google Scholar 

  165. M. Peters: Ternäre und quaternäre quadratische Formen und Quaternionenalgebren, Acta Arith. 15 (1969), 329–365.

    MathSciNet  MATH  Google Scholar 

  166. H. Pieper: Die Einheitengruppe eines zahm-verzweigten galoisschen lokalen Körpers als Galois-Modul, Math. Nachr. 54 (1972), 173–210.

    MathSciNet  MATH  CrossRef  Google Scholar 

  167. W. Plesken: Projective lattices over group orders as amalgamations of irreducible lattices, Carleton Math. Lect. Notes 25 (1980), 1901–1911.

    MathSciNet  MATH  Google Scholar 

  168. W. Plesken: Gruppenringe über lokalen Dedekindbereichen, Habilitationsschrift, Rheinisch-Westfälischen Technischen Hochschule, Aachen, 1980.

    MATH  Google Scholar 

  169. W. Plesken: Applications of the theory of orders to crystallographic groups, preprint.

    Google Scholar 

  170. J. Queyrut: K-théorie algébrique et structure galoisienne des anneaux d'entiers, Thesis, Bordeaux.

    Google Scholar 

  171. M. Ramras: Maximal orders over regular local rings, Trans. Amer. Math. Soc. 155 (1971), 345–352.

    MathSciNet  MATH  CrossRef  Google Scholar 

  172. I. Reiner: Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. 8 (1957), 142–146.

    MathSciNet  MATH  CrossRef  Google Scholar 

  173. I. Reiner: The integral representation ring of a finite group, Michigan Math. J. 12 (1965), 11–22.

    MathSciNet  MATH  CrossRef  Google Scholar 

  174. I. Reiner: A survey of integral representation theory, Bull. Amer. Math. Soc. 76 (1970), 159–227.

    MathSciNet  MATH  CrossRef  Google Scholar 

  175. I. Reiner: Hereditary orders, Rend. Sem. Mat. Univ. Padova 52 (1974), 219–225.

    MathSciNet  MATH  Google Scholar 

  176. I. Reiner: Maximal orders, Academic Press, London, 1975.

    MATH  Google Scholar 

  177. I. Reiner: Class groups and Picard groups of group rings and orders, CBMS Regional Conference Series in Mathematics 26, American Mathematical Society, 1976.

    Google Scholar 

  178. I. Reiner: Topics in integral representation theory, Springer Lect. Notes Math. 744(1979), 1–143.

    MathSciNet  CrossRef  Google Scholar 

  179. I. Reiner: Zeta functions and integral representations Comm. Alg. 8(1980), 911–925.

    MathSciNet  MATH  CrossRef  Google Scholar 

  180. I. Reiner and S. Ullom: A Mayer-Vietoris sequence for class groups, J. Algebra 31 (1974), 305–342.

    MathSciNet  MATH  CrossRef  Google Scholar 

  181. I. Reiten: Almost split sequences, Workshop on permutation groups and indecomposable modules, Giessen, 1975.

    Google Scholar 

  182. D. Rim: Modules over finite groups, Ann. of Math. (2) 69(1959), 700–712.

    MathSciNet  MATH  CrossRef  Google Scholar 

  183. D. Rim: On projective class groups, Trans. Amer. Math. Soc. 98 (1961), 459–467.

    MathSciNet  MATH  CrossRef  Google Scholar 

  184. C. Ringel and K. Roggenkamp: Diagrammatic methods in the representation theory of orders, J. Algebra 60(1979), 11–42.

    MathSciNet  MATH  CrossRef  Google Scholar 

  185. J. Ritter: The class group à la Fröhlich, preprint.

    Google Scholar 

  186. K. Roggenkamp and V. Huber-Dyson: Lattices over orders I, Springer Lect. Notes Math. 115(1970).

    Google Scholar 

  187. K. Roggenkamp: Lattices over orders II, Springer Lect. Notes Math. 142(1970).

    Google Scholar 

  188. K. Roggenkamp: Projective homomorphisms and extension of lattices, Crelle 246(1971), 41–45.

    MathSciNet  MATH  Google Scholar 

  189. K. Roggenkamp: Bass-orders and the number of nonisomorphic indecomposable lattices over orders, Proc. Symp. Pure Math. XXI, 1971.

    Google Scholar 

  190. K. Roggenkamp: Almost split sequences for group rings, Mitt. Math. Sem. Giessen 121(1976), 1–25.

    MathSciNet  Google Scholar 

  191. K. Roggenkamp: The construction of almost split sequences for integral group rings and orders, Comm. Alg. 5(1977), 1363–1373.

    MathSciNet  MATH  CrossRef  Google Scholar 

  192. K. Roggenkamp: Integral representations and presentations of finite groups, Springer Lect. Notes Math. 744(1979), 149–275.

    MathSciNet  Google Scholar 

  193. K. Roggenkamp: Integral representations and structure of finite group rings, Les Presses de l'Université de Montréal, 1980.

    Google Scholar 

  194. K. Roggenkamp: Indecomposable representations of orders of global dimension two, J. Algebra 64(1980), 230–248.

    MathSciNet  MATH  CrossRef  Google Scholar 

  195. K. Roggenkamp: Representation theory of blocks of defect 1, Carleton Math. Lect. Notes 25(1980), 2001–2024.

    MathSciNet  MATH  Google Scholar 

  196. K. Roggenkamp and J. Schmidt: Almost split sequences for integral group rings and orders, Comm. Alg. 4(1976), 893–917.

    MathSciNet  MATH  CrossRef  Google Scholar 

  197. A. Roiter: On the representations of the cyclic group of fourth order by integral matrices, Vestnik Leningrad Univ. 15(1960), no. 19, 65–74 (in Russian).

    MathSciNet  MATH  Google Scholar 

  198. A. Roiter: Categories with division and integral representations, Dokl. Akad. Nauk SSSR 153(1963), 46–48 =Sov. Math. Dokl. 4(1963), 1621–1623.

    MathSciNet  Google Scholar 

  199. A. Roiter: On integral representations belonging to a genus, Izv. Akad. Nauk SSSR, Ser. Mat. 30(1966), 1315–1324 =Amer. Math. Soc. Transl. (2) 71(1968), 49–59.

    MathSciNet  Google Scholar 

  200. A. Roiter: On the theory of integral representations of rings, Mat. Zametki 3(1968), 361–366 =Math. Notes USSR 3(1968), 228–230.

    MathSciNet  MATH  Google Scholar 

  201. R. Sandling: Graham Higman's thesis “Units in Group Rings”, preprint.

    Google Scholar 

  202. J. Schmidt: A construction of large lattices by almost split sequences, Arch. Math. (Basel) 29 (1977), 481–484.

    MathSciNet  MATH  CrossRef  Google Scholar 

  203. R. Schwarzenberger: N-dimensional crystallography Pitman, San Francisco, 1980.

    MATH  Google Scholar 

  204. J.-P. Serre: Complex multiplication,in [39].

    Google Scholar 

  205. J.-P. Serre: Représentations linéaires des groupes finis, second edition, Hermann, Paris, 1967. English translation, Springer-Verlag, New York, 1977.

    MATH  Google Scholar 

  206. G. Shimura: Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten, Tokyo and Princeton University Press, Princeton, 1971.

    MATH  Google Scholar 

  207. C. Siegel: Topics in complex function theory volume 1: Elliptic functions and uniformization theory, Interscience, New York, 1969.

    MATH  Google Scholar 

  208. M. Singer: Invertible powers of ideals over orders in commutative separable algebras, Proc. Cambridge Phil. Soc. 67 (1970), 237–242.

    MathSciNet  MATH  CrossRef  Google Scholar 

  209. D. Sjöstrand: Conductors with respect to hereditary orders, Michigan Math. J. 20 (1973), 181–185.

    MathSciNet  MATH  CrossRef  Google Scholar 

  210. L. Solomon: Zeta functions and integral representation theory, Advances in Math. 26 (1977), 306–326.

    MathSciNet  MATH  CrossRef  Google Scholar 

  211. L. Solomon: Partially ordered sets with colors, Proc. Symp. Pure Math. 34 (1979), 309–329.

    MathSciNet  MATH  CrossRef  Google Scholar 

  212. A. Speiser: Allgemeine Zahlentheorie, Vjschr. Naturforsch. Ges. Zürich 71 (1926), 8–48.

    MATH  Google Scholar 

  213. A. Speiser: Idealtheorie in rationalen Algebren in [59].

    Google Scholar 

  214. D. Stancl: Multiplication in Grothendieck rings of integral group rings, J. Algebra 7 (1967), 77–90.

    MathSciNet  MATH  CrossRef  Google Scholar 

  215. E. Steinitz: Rechteckige Systeme und Moduln in algebraischen Zahlenkörpern I, Math. Ann 71 (1911), 328–354; II, ibid. 72 (1912), 297–345.

    MathSciNet  MATH  CrossRef  Google Scholar 

  216. J. Strooker: Faithfully projective modules and clean algebras, dissertation, Utrecht, 1965.

    Google Scholar 

  217. R. Swan: Induced representations and projective modules, Ann. of Math. (2) 71 (1960), 552–578.

    MathSciNet  MATH  CrossRef  Google Scholar 

  218. R. Swan: The Grothendieck ring of a finite group, Topology 2 (1963), 85–110.

    MathSciNet  MATH  CrossRef  Google Scholar 

  219. R. Swan: Invariant rational functions and a problem of steenrod, Invent. Math. 7 (1969), 148–158.

    MathSciNet  MATH  CrossRef  Google Scholar 

  220. R. Swan and E. Evans: K-theory of finite groups and orders, Springer Lect. Notes Math. 149, 1970.

    Google Scholar 

  221. S. Takahashi: Arithmetic of group representations, Tôhoku Math. J. (2) 11 (1959), 216–246.

    MathSciNet  MATH  CrossRef  Google Scholar 

  222. O. Taussky: Matrices of rational integers, Bull. Amer. Math. Soc. 66 (1960), 327–345.

    MathSciNet  MATH  CrossRef  Google Scholar 

  223. O. Taussky: Ideal matrices I, Arch. Math. (Basel) 13 (1962), 275–282; II, Math. Ann. 150 (1963), 218–225.

    MathSciNet  MATH  CrossRef  Google Scholar 

  224. O. Taussky and J. Todd: Matrices with finite period, Proc. Edinburgh Math. Soc. (2) 6 (1940), 128–134.

    MathSciNet  MATH  CrossRef  Google Scholar 

  225. O. Taussky and J. Todd: Matrices of finite period, Proc. Roy. Irish Acad. Sect. A 46 (1941), 113–121.

    MathSciNet  MATH  Google Scholar 

  226. M. Taylor: On the self-duality of a ring of integers as a Galois module, Invent. Math. 46 (1978), 173–177.

    MathSciNet  MATH  CrossRef  Google Scholar 

  227. M. Taylor: Galois module structure of integers of relative abelian extensions Crelle 303/304 (1978), 97–101.

    MathSciNet  MATH  Google Scholar 

  228. M. Taylor: Locally free classgroups of groups of prime power order. J. Algebra 50 (1978), 462–487.

    MathSciNet  MATH  CrossRef  Google Scholar 

  229. M. Taylor: A logarithmic approach to class groups of integral group rings, J. Algebra 60 (1980), 321–353.

    MATH  CrossRef  Google Scholar 

  230. M. Taylor: On Fröhlich's conjecture for rings of integers of tame extensions, Invent. Math., to appear.

    Google Scholar 

  231. T. Theohari-Apostolidi: On integral representation of twisted group rings, Oberwolfach Tagungsbericht 29/1980, 21–22.

    Google Scholar 

  232. J. Thompson: Vertices and sources, J. Algebra 6 (1967), 1–6.

    MathSciNet  MATH  CrossRef  Google Scholar 

  233. J. Todd: The lemniscate constants, Comm. ACM 18 (1975), 14–19.

    MathSciNet  MATH  CrossRef  Google Scholar 

  234. J. Towber: Composition of oriented binary quadratic form-classes over commutative rings, Advances in Math. 36 (1980), 1–107.

    MathSciNet  MATH  CrossRef  Google Scholar 

  235. A. Troy: Integral representations of cyclic groups of order p2, thesis, University of Illinois, Urbana, 1961.

    Google Scholar 

  236. F. van der Blij and T. Springer: The arithmetics of octaves and of the group G2, Nederl. Akad. Wentensch. Proc. 62A (1959) 406–418.

    MATH  CrossRef  Google Scholar 

  237. H. Weber: Theorie der Abel'schen Zahlkörper I, Acta Math. 8 (1886), 193–263; II, ibid. 9 (1887), 105–130.

    MathSciNet  CrossRef  Google Scholar 

  238. H. Weber: Lehrbuch der Algebra III, Braunschweig, 1908.

    Google Scholar 

  239. A. Weil: Basic Number Theory, Springer-Verlag, New York, 1967.

    MATH  CrossRef  Google Scholar 

  240. H. Weyl: Symmetry, Princeton University Press, Princeton, 1952.

    MATH  CrossRef  Google Scholar 

  241. A. Wiedemann: Auslander-Reiten graphs of orders and blocks of cyclic defect two, Oberwolfach Tagungsbericht 29/1980, 24–25.

    Google Scholar 

  242. S. Williamson: Crossed Products and hereditary orders, Nagoya Math. J. 23 (1963), 103–120.

    MathSciNet  MATH  Google Scholar 

  243. S. Wilson: Reduced norms in the K-theory of orders J. Algebra 46 (1977), 1–11.

    MathSciNet  MATH  CrossRef  Google Scholar 

  244. K. Wingberg: Die Einseinheitengruppe von p-Erweiterungen regulären p-adischer Zahlkorper als Galoismodul, Crelle 305 (1979), 206–214.

    MathSciNet  MATH  Google Scholar 

  245. J. Wolf: Spaces of constant curvature, McGraw-Hill, New York, 1967.

    MATH  Google Scholar 

  246. S. Yamamoto: On the rank of the p-divisor class group of Galois extensions of algebraic number fields, Kumamoto J. Sci. (Math.) 9 (1972), 33–40.

    MathSciNet  MATH  Google Scholar 

  247. H. Yokoi: On the ring of integers in an algebraic number field as a representation module of the Galois group, Nagoya Math. J. 16 (1960), 83–90.

    MathSciNet  MATH  Google Scholar 

  248. H. Zassenhaus: Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen, Abh. Math. Sem. Univ. Hamburg 12 (1938), 276–288.

    MathSciNet  MATH  CrossRef  Google Scholar 

  249. H. Zassenhaus: Über einen Algorithmus zur Bestimmung der Raumgruppen, Comm. Math. Helv. 21 (1948), 117–141.

    MathSciNet  MATH  CrossRef  Google Scholar 

  250. M. Zorn: Note zur analytischen hyperkomplexen Zahlentheorie, Abh. Math. Sem. Univ. Hamburg 9 (1933), 197–201.

    MathSciNet  MATH  CrossRef  Google Scholar 

  251. I. Reiner: Extensions of irreducible modules, Hichigan Math. J. 10 (1963), 273–276.

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Gustafson, W.H. (1981). Remarks on the history and applications of integral representations. In: Roggenkamp, K.W. (eds) Integral Representations and Applications. Lecture Notes in Mathematics, vol 882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0092486

Download citation

  • DOI: https://doi.org/10.1007/BFb0092486

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10880-1

  • Online ISBN: 978-3-540-38789-3

  • eBook Packages: Springer Book Archive