Skip to main content

Detecting strange attractors in turbulence

Contributed Papers

Part of the Lecture Notes in Mathematics book series (LNM,volume 898)

Keywords

  • Vector Field
  • Limit Capacity
  • Compact Manifold
  • Hausdorff Dimension
  • Strange Attractor

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0091924
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-38945-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aeyels, Generic observability of differentiable systems, preprint, April 1980, Dept. of System Dynamics, State Univ. Gent.

    Google Scholar 

  2. R. Bowen, Entropy of group endomorphisms and homogeneous spaces, Trans. A.M.S., 153 (1971), 401–414.

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. R. Bowen, On Axiom A diffeomorphisms, Regional Conference Series in Mathematics, 35, A.M.S. Providence, 1977.

    MATH  Google Scholar 

  4. M. Denker, C. Grillenberger, & K. Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, 527, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  5. H. Federer, Geometric measure theory, Springer-Verlag, Berlin, 1969.

    MATH  Google Scholar 

  6. P.R. Fenstermacher, J.L. Swinney & J.P. Gollub, Dynamical instability and the transition to chaotic Taylor vortex flow, Journal Fluid Mech. 94 (1979) (1) 103–128.

    ADS  CrossRef  Google Scholar 

  7. P. Frederickson, J.L. Kaplan & J.A. Yorke, The dimension of the strange attractor for a class of difference systems, preprint, June 1980, University of Maryland.

    Google Scholar 

  8. J.P. Gollub, The onset of turbulence: convection, surface waves, and oscillations, in Systems far from Equilibrium, Proc. Sitges Int. School and Symposium on Statistical Mech., Ed. L. Garrido, J. Garcia, Lecture Notes in Physics, Springer-Verlag, Berlin, to appear.

    Google Scholar 

  9. J.P. Gollub, & S.V. Benson, Time-dependent instability and the transition to, turbulent convection, preprint, Physics Dept, Haverford College, Haverford, Pa. 19041, USA.

    Google Scholar 

  10. J.P. Gollub & H.L. Swinney, Onset of turbulence in a rotating fluid, Phys. Rev. Lett. 35 (1975), 927–930.

    ADS  CrossRef  Google Scholar 

  11. M. Herman, Mesure de Lebesgue et nombre de rotation, in Geometry and Topology, ed. J. Palis and M. do Carmo, Lecture Notes in Mathematics 597, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  12. W. Hurewicz & H. Wallman, Dimension theory, Princeton University Press, 1948, Princeton, N.J.

    Google Scholar 

  13. L. Landau & E. Lifschitz, Méchanic des Fluides, ed. MIR, Moscow, 1971.

    Google Scholar 

  14. R. Mañé, On the dimension of the compact invariant sets of certain non-linear maps, preprint IMPA, Rio de Janeiro, 1980.

    Google Scholar 

  15. J.E. Marsden, The Hopf bifurcation for non-linear semi groups, Bull. A.M.S., 79 (1973), 537–541.

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. J.E. Marsden & M. McCracken, The Hopf bifurcation and its applications, Appl. math. sci. 19, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  17. N.H. Packerd, J.P. Crutchfield, J.D. Farmer & R.S. Shaw, Geometry from the time series, preprint, May 1979, University of California, Santa Cruz, (Dynamical Systems Collective).

    Google Scholar 

  18. D. Rand, The pre-turbulent transitions and flows of a viscous fluid between concentric rotating cylinders, preprint Warwick University, June 1980.

    Google Scholar 

  19. D. Ruelle & F. Takens, On the nature of turbulence, Comm. math. Phys. 20 (1971), 167–192; 23 (1971), 343–344.

    ADS  MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Takens, F. (1981). Detecting strange attractors in turbulence. In: Rand, D., Young, LS. (eds) Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, vol 898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0091924

Download citation

  • DOI: https://doi.org/10.1007/BFb0091924

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11171-9

  • Online ISBN: 978-3-540-38945-3

  • eBook Packages: Springer Book Archive