Detecting strange attractors in turbulence

  • Floris Takens
Contributed Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 898)


Vector Field Limit Capacity Compact Manifold Hausdorff Dimension Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Aeyels, Generic observability of differentiable systems, preprint, April 1980, Dept. of System Dynamics, State Univ. Gent.Google Scholar
  2. 2.
    R. Bowen, Entropy of group endomorphisms and homogeneous spaces, Trans. A.M.S., 153 (1971), 401–414.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    R. Bowen, On Axiom A diffeomorphisms, Regional Conference Series in Mathematics, 35, A.M.S. Providence, 1977.zbMATHGoogle Scholar
  4. 4.
    M. Denker, C. Grillenberger, & K. Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, 527, Springer-Verlag, Berlin, 1976.zbMATHGoogle Scholar
  5. 5.
    H. Federer, Geometric measure theory, Springer-Verlag, Berlin, 1969.zbMATHGoogle Scholar
  6. 6.
    P.R. Fenstermacher, J.L. Swinney & J.P. Gollub, Dynamical instability and the transition to chaotic Taylor vortex flow, Journal Fluid Mech. 94 (1979) (1) 103–128.ADSCrossRefGoogle Scholar
  7. 7.
    P. Frederickson, J.L. Kaplan & J.A. Yorke, The dimension of the strange attractor for a class of difference systems, preprint, June 1980, University of Maryland.Google Scholar
  8. 8.
    J.P. Gollub, The onset of turbulence: convection, surface waves, and oscillations, in Systems far from Equilibrium, Proc. Sitges Int. School and Symposium on Statistical Mech., Ed. L. Garrido, J. Garcia, Lecture Notes in Physics, Springer-Verlag, Berlin, to appear.Google Scholar
  9. 9.
    J.P. Gollub, & S.V. Benson, Time-dependent instability and the transition to, turbulent convection, preprint, Physics Dept, Haverford College, Haverford, Pa. 19041, USA.Google Scholar
  10. 10.
    J.P. Gollub & H.L. Swinney, Onset of turbulence in a rotating fluid, Phys. Rev. Lett. 35 (1975), 927–930.ADSCrossRefGoogle Scholar
  11. 11.
    M. Herman, Mesure de Lebesgue et nombre de rotation, in Geometry and Topology, ed. J. Palis and M. do Carmo, Lecture Notes in Mathematics 597, Springer-Verlag, Berlin, 1977.Google Scholar
  12. 12.
    W. Hurewicz & H. Wallman, Dimension theory, Princeton University Press, 1948, Princeton, N.J.Google Scholar
  13. 13.
    L. Landau & E. Lifschitz, Méchanic des Fluides, ed. MIR, Moscow, 1971.Google Scholar
  14. 14.
    R. Mañé, On the dimension of the compact invariant sets of certain non-linear maps, preprint IMPA, Rio de Janeiro, 1980.Google Scholar
  15. 15.
    J.E. Marsden, The Hopf bifurcation for non-linear semi groups, Bull. A.M.S., 79 (1973), 537–541.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    J.E. Marsden & M. McCracken, The Hopf bifurcation and its applications, Appl. math. sci. 19, Springer-Verlag, Berlin, 1976.zbMATHGoogle Scholar
  17. 17.
    N.H. Packerd, J.P. Crutchfield, J.D. Farmer & R.S. Shaw, Geometry from the time series, preprint, May 1979, University of California, Santa Cruz, (Dynamical Systems Collective).Google Scholar
  18. 18.
    D. Rand, The pre-turbulent transitions and flows of a viscous fluid between concentric rotating cylinders, preprint Warwick University, June 1980.Google Scholar
  19. 19.
    D. Ruelle & F. Takens, On the nature of turbulence, Comm. math. Phys. 20 (1971), 167–192; 23 (1971), 343–344.ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Floris Takens
    • 1
  1. 1.Mathematisch InstituutGroningenHolland

Personalised recommendations