Abstract
An intercalate in a Latin square is a subsquare of order 2; I(n) denotes the maximum number of intercalates in any Latin square of order n.
Upper bounds for I(n) are found, and it is shown that they are attained if and only if n=2α or 2α-1. A number of lower bounds are found for I(n).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
P. Dembowski, Finite Geometries (Springer-Verlag, New York, 1968).
J. Dénes and A.D. Keedwell, Latin Squares and Their Applications (Akadémiai Kiadó, Budapest, 1974).
H.W. Norton, The 7×7 squares. Ann. Eugenics 9 (1939), 269–307.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1981 Springer-Verlag
About this paper
Cite this paper
Heinrich, K., Wallis, W.D. (1981). The maximum number of intercalates in a latin square. In: McAvaney, K.L. (eds) Combinatorial Mathematics VIII. Lecture Notes in Mathematics, vol 884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0091822
Download citation
DOI: https://doi.org/10.1007/BFb0091822
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-10883-2
Online ISBN: 978-3-540-38792-3
eBook Packages: Springer Book Archive