Skip to main content

The maximum number of intercalates in a latin square

  • Contributed Papers
  • Conference paper
  • First Online:
Combinatorial Mathematics VIII

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 884))

Abstract

An intercalate in a Latin square is a subsquare of order 2; I(n) denotes the maximum number of intercalates in any Latin square of order n.

Upper bounds for I(n) are found, and it is shown that they are attained if and only if n=2α or 2α-1. A number of lower bounds are found for I(n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Dembowski, Finite Geometries (Springer-Verlag, New York, 1968).

    Book  MATH  Google Scholar 

  2. J. Dénes and A.D. Keedwell, Latin Squares and Their Applications (Akadémiai Kiadó, Budapest, 1974).

    MATH  Google Scholar 

  3. H.W. Norton, The 7×7 squares. Ann. Eugenics 9 (1939), 269–307.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kevin L. McAvaney

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Heinrich, K., Wallis, W.D. (1981). The maximum number of intercalates in a latin square. In: McAvaney, K.L. (eds) Combinatorial Mathematics VIII. Lecture Notes in Mathematics, vol 884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0091822

Download citation

  • DOI: https://doi.org/10.1007/BFb0091822

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10883-2

  • Online ISBN: 978-3-540-38792-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics