Advertisement

Groups of exponent eight

  • Fritz J. Grunewald
  • George Havas
  • J. L. Mennicke
  • M. F. Newman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 806)

Keywords

Normal Subgroup Finite Index Transformation Formula Coset Representative Nilpotency Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. С.И. Адян [S.I. Adjan] (1971), "О подгруппах свободных периодических групп нечетного показателя" [On subgroups of free periodic groups of odd exponent], Trudy Mat. Inst. Steklov. 112, 64–72, 386; Proc. Steklov Inst. Math. 112, 61–69 (1973). MR48#2266; Zbl.259.20028; RZ [1972], 1A331.MathSciNetGoogle Scholar
  2. S.I. Adyan (1974), "Periodic groups of odd exponent", Proc. Second Internat. Conf. Theory of Groups (Canberra, 1973), pp. 8–12 (Lecture Notes in Mathematics, 372. Springer-Verlag, Berlin, Heidelberg, New York). MR51#3318; Zbl.306.20044.zbMATHGoogle Scholar
  3. С.И. Адян [S.I. Adjan] (1975), Проблема Бернса∂а u мож∂есмва в ∂руnnах (Izdat "Nauka", Moscow]. English translation: S.I. Adian (1979), The Burnside problem and identities in groups (translated by J. Lennox, J. Wiegold. Ergebnisse der Mathematik und ihrer Grenzgebiete, 95. Springer-Verlag, Berlin, Heidelberg, New York). MR55#5753; Zbl.306.20045; RZ [1975], 12A241.Google Scholar
  4. W. Burnside (1902), "On an unsettled question in the theory of discontinuous groups", Quart. J. Pure Appl. Math. 33, 230–238. FdM33,149.zbMATHGoogle Scholar
  5. John J. Cannon, Lucien A. Dimino, George Havas and Jane M. Watson (1973), "Implementation and analysis of the Todd-Coxeter algorithm", Math. Comp. 27, 463–490. MR49#390; Zbl.314.20028; RZ [1974], 5A243.MathSciNetCrossRefzbMATHGoogle Scholar
  6. H.S.M. Coxeter (1940), "A method for proving certain abstract groups to be infinite", Bull. Amer. Math. Soc. 46, 246–251. MRl,258; FdM66,73; Zbl.24,254.MathSciNetCrossRefzbMATHGoogle Scholar
  7. H.S.M. Coxeter and W.O.J. Moser (1957), Generators and relations for discrete groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 14. Third edition: Springer-Verlag, Berlin, Göttingen, Heidelberg. 1972). MR19,527; Zbl.77,28; RZ [1961], 11A222.CrossRefzbMATHGoogle Scholar
  8. Fritz Grunewald-Jens Mennicke (1973), "Über eine Gruppe vom Exponenten acht" (Dissertation zur Erlangung des Doktorgrades der Fakultät für Mathematik der Universität Bielefeld, Bielefeld).Google Scholar
  9. George Havas (1974), "Computational approaches to combinatorial group theory" (PhD thesis, University of Sydney, Sydney). See also: Abstract, Bull. Austral. Math. Soc. 11, 475–476. RZ [1975], 8A224.Google Scholar
  10. Franz-Josef Hermanns (1976), "Eine metabelsche Gruppe vom Exponenten 8" (Diplomarbeit, Fakultät für Mathematik, Universität Bielefeld, Bielefeld).zbMATHGoogle Scholar
  11. B. Huppert (1967), Endliche Gruppen I (Die Grundlehren der Mathematischen Wissenschaften, 134. Springer-Verlag, Berlin, Heidelberg, New York). MR37#302; RZ [1968], 6A256R.zbMATHGoogle Scholar
  12. Eugene F. Krause (1964), "Groups of exponent 8 satisfy the 14th Engel congruence", Proc. Amer. Math. Soc. 15, 491–496. MR29#2298; Zbl.122,30; RZ [1965], 1A171.MathSciNetzbMATHGoogle Scholar
  13. I.D. Macdonald (1973), "Computer results on Burnside groups", Bull. Austral. Math. Soc. 9, 433–438. MR49#5165; Zbl.267.20011; RZ [1974], 10A201.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Wilhelm Magnus, Abraham Karrass, Donald Solitar (1966), Combinatorial group theory: Presentations of groups in terms of generators and relations (Pure and Applied Mathematics, 13. Second, revised edition: Interscience [John Wiley & Sons], New York, London, Sydney. Dover, New York, 1976). MR34#7617; Zbl.138,256; RZ [1967], 9A143.zbMATHGoogle Scholar
  15. M.F. Newman (1976), "Calculating presentations for certain kinds of quotient groups", SYMSAC '76, Proc. ACM Symposium on Symbolic and Algebraic Computation (New York, 1976), pp. 2–8 (Association for Computing Machinery, New York).CrossRefGoogle Scholar
  16. Derek J.S. Robinson (1972), Finiteness conditions and generalized soluble groups, Part I (Ergebnisse der Mathematik und ihrer Grenzgebiete, 62. Springer-Verlag, Berlin, Heidelberg, New York). MR48#11314; Zbl.243.20032; RZ [1973], 4A325к.CrossRefzbMATHGoogle Scholar
  17. И.Н. Санов [I.N. Sanov] (1947), "О проблеме Бернсаида" [On Burnside's problem], Dokl. Akad. Nauk SSR (N.S.) 57, 759–761. MR9,224; Zbl.29,102.Google Scholar
  18. И.Н. Санов [I.N. Sanov] (1951), "О некоторой системе соотношений в периодических группах с периодом степинью простого числа" [On a certain system of relations in periodic groups with period a power of a prime number], Izv. Akad. Nauk SSSR Ser. Mat. 15, 477–502. MR14,722: Zbl.45,302.Google Scholar
  19. David Shield (1977), The class of a nilpotent wreath product", Bull. Austral. Math. Soc. 17, 53–89. MR57#3266; Zbl.396.20015; RZ [1978], 9A232.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Fritz J. Grunewald
    • 1
    • 2
    • 3
    • 4
  • George Havas
    • 1
    • 2
    • 3
    • 4
  • J. L. Mennicke
    • 1
    • 2
    • 3
    • 4
  • M. F. Newman
    • 1
    • 2
    • 3
    • 4
  1. 1.Sonderforschungsbereich, Theoretische MathematikUniversität BonnBonnFederal Republic of Germany
  2. 2.Department of Mathematics, Institute of Advanced StudiesAustralian National UniversityCanberraAustralia
  3. 3.Universität BielefeldBielefeldFederal Republic of Germany
  4. 4.Department of Mathematics, Institute of Advanced StudiesAustralian National UniversityCanberraAustralia

Personalised recommendations