P-adic symmetric domains

  • Harm Voskuil
Part of the Lecture Notes in Mathematics book series (LNM, volume 1454)


Symmetric Space Meromorphic Function Symmetric Domain Parahoric Subgroup Maximal Isotropic Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AMRT]
    A. Ash, D. Mumford, M. Rapoport and Y. Tai, Smooth compactification of locally symmetric varieties, Math. Sci. Press, 1975.Google Scholar
  2. [BB]
    W.L. Baily and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84 (1966), 442–528.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Be]
    V. Berkovich, Non-archimedean analytic spaces and buildings of semi-simple groups, Preprint I.H.E.S., february 1989.Google Scholar
  4. [B]
    A. Borel, Introduction aux groupes arithmétiques, Hermann, 1969.Google Scholar
  5. [BS]
    A. Borel and J.P. Serre, Corners and arithmetic groups, Comm. Math. Helv. 48 (1973), 436–491.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BGR]
    S. Bosch, U. Güntzer and R. Remmert, Non-archimedean analysis, Springer Verlag, 1984.Google Scholar
  7. [BT]
    F. Bruhat and J. Tits, Groupes réductifs sur un corps local I: Données radicielles valuées, Publ. Math. I.H.E.S. 41 (1972), 5–251.MathSciNetCrossRefGoogle Scholar
  8. [C]
    É. Cartan, Sur les domaines bornes homogènes de l'espace de n variables complexes, Abh. Math. Sem. Univ. Hamburg 11 (1935), 116–162; Also, Oeuvres Complètes part I, 1259–1308.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [D]
    V.G. Drinfeld, Elliptic Modules, Math. USSR-Sb. 23 (1974), 561–592MathSciNetCrossRefGoogle Scholar
  10. [F]
    G. Faltings, F-isocrystals on open varieties: Results and conjectures, Preprint Princeton University, 1989.Google Scholar
  11. [FP]
    J. Fresnel et M. van der Put, Geométrie analytique rigide et applications, Progress in Math. 18, Birkhäuser, 1981.Google Scholar
  12. [GP]
    L. Gerritzen and M. van der Put, Schottky groups and Mumford curves, Lect. Notes in Math. 817, Springer Verlag, 1980.Google Scholar
  13. [H]
    S. Helgason, Differential geometry and symmetric spaces, Academic Press, 1962.Google Scholar
  14. [I]
    M.N. Ishida, An elliptic surface covered by Mumford's fake projective plane, Tôhoku Math. J. 40 (1988), 367–396.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Kan]
    W.M. Kantor, Reflections on concrete buildings, Geometricae dedicata 25 (1988), 121–145.MathSciNetzbMATHGoogle Scholar
  16. [KKMS]
    G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroïdal embeddings I, Lect. Notes in Math. 339, Springer Verlag, 1973.Google Scholar
  17. [Ku]
    A. Kurihara, Construction of p-adic unit balls and the Hirzebruch proportionality, Amer. J. Math. 102 (1980), 565–648.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Mac]
    I.G. Macdonald, Affine root systems and Dedekind's η function, Inv. Math. 15 (1972), 91–143.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Mar]
    G.A. Margulis, Arithmeticity of irreducible lattices in the semisimple groups of rank greater than one, Inv. Math. 76 (1984), 93–120.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Mum.1]
    D. Mumford, An analytic construction of degenerating curves over complete local rings, Compositio Math. 24 (1972), 129–174.MathSciNetzbMATHGoogle Scholar
  21. [Mum.2]
    D. Mumford, An algebraic surface with K ample, (K 2) = 9, p g = q = 0, Amer. J. Math. 101 (1979), 233–244.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [Mus]
    G.A. Mustafin, Nonarchimedean uniformization, Math. USSR-Sb. 34 (1978), 187–214.CrossRefzbMATHGoogle Scholar
  23. [N]
    Y. Namikawa, Toroidal compactification of Siegel spaces, Lect. Notes in Math. 812, Springer Verlag, 1980.Google Scholar
  24. [O.1]
    T. Oda, Lectures on torus embeddings and applications, Tata Inst. of Fund. Research 58, Springer Verlag, 1978.Google Scholar
  25. [O.2]
    T. Oda, Convex bodies and algebraic geometry, Springer Verlag, 1988.Google Scholar
  26. [S]
    J.P. Serre, Arithmetic groups, in “Homological group theory” edited by C.T.C. Wall, London Math. Soc. Lect. Notes Series 36 (1979), 105–136.Google Scholar
  27. [T.1]
    J. Tits, Travaux de Margulis sur les sous-groupes discrets de groupes de Lie, Sem. Bourbaki 1975/76, Lect. Notes in Math. 567, Springer Verlag, 1977, 174–190.MathSciNetCrossRefGoogle Scholar
  28. [T.2]
    J. Tits, Reductive groups over local fields, Proc. A.M.S. Symp. Pure Math. 33 (1979), 29–69.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [V]
    T.N. Venkataramana, On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic, Inv. Math. 92 (1988), 255–306.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Harm Voskuil
    • 1
  1. 1.Department of MathematicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations