Gross-Koblitz formula for function fields

  • Dinesh S. Thakur
Part of the Lecture Notes in Mathematics book series (LNM, volume 1454)


Function Field Abelian Extension Torsion Point Drinfeld Module Multiplicative Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [C1]
    L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math.J. (1935),pp.137–168.Google Scholar
  2. [C2]
    L. Carlitz, A class of polynomials, Trans. A.M.S. 43 (1938), pp.167–182.CrossRefzbMATHGoogle Scholar
  3. [D]
    V. Drinfeld, Elliptic modules (English translation) Math. Sbornik, vol23,(1974),561–592.CrossRefGoogle Scholar
  4. [Ge]
    E. U. Gekeler, Drinfeld modular curves, Lecture notes in math. 1231.Google Scholar
  5. [Go1]
    D. Goss, von-Staudt for F q[T], Duke Math.J. 45 (1978),pp.885–910.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Go2]
    D. Goss, Modular forms for F q[T]. J. reine angew. Math. vol.317, (1980),163–191.MathSciNetGoogle Scholar
  7. [Go3]
    D. Goss, The Γ-function in the arithmetic of function fields. Duke Math J. vol. 56 (1988), 163–191.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [G-K]
    B.H. Gross, N. Koblitz, Gauss sums and the p-adic Γ-function. Ann. Math. 109, 569–581 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [H1]
    D. Hayes, Explicit class field theory for rational function fields. Trans. Am. Math. Soc. 189, 77–91(1974).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [H2]
    D. Hayes, Explicit class field theory in global function fields. G.C. Rota (ed), Studies in Algebra and Number theory. Academic press 173–217 (1979)Google Scholar
  11. [H3]
    D. Hayes, Stickelberger elements in function fields. Comp. Math. 55, 209–235 (1985).MathSciNetzbMATHGoogle Scholar
  12. [H4]
    D. Hayes, The refined ℘-adic abelian Stark conjecture in function fields. Inv. Math. 94, 505–527 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  13. [K]
    N. Katz, Crystalline cohomology, Dieudonne modules and Jacobi sums. In Automorphic forms, representation theory and arithmetic. (TIFR, Bombay, 1979), 165–245.Google Scholar
  14. [T1]
    D. Thakur, Gamma functions and Gauss sums for function fields and periods of Drinfeld modules. Thesis, Harvard University (1987).Google Scholar
  15. [T2]
    D. Thakur, Gauss sums for F q[T]. Inv. Math. 94,105–112 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  16. [T3]
    D. Thakur, Gamma functions for function fields and Drinfeld modules, To appear in Annals of Math.Google Scholar
  17. [T4]
    D. Thakur, Gauss sums for function fields, To appear in Journal of Number Theory.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Dinesh S. Thakur
    • 1
  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations