A p-adic analogue of the Chowla-Selberg formula

  • Arthur Ogus
Part of the Lecture Notes in Mathematics book series (LNM, volume 1454)


Abelian Variety Free Abelian Group Shimura Variety Cyclotomic Field Ulterior Motive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Greg Anderson. Cyclotomy and a covering of the Taniyama group. Compositio Mathematicae, 57(153–217), 1985.Google Scholar
  2. [2]
    Greg Anderson. Torsion points on Fermat varieties, roots of circular units, and relative singular homology. Duke Mathematics Journal, 54:501–561, 1987.CrossRefGoogle Scholar
  3. [3]
    Pierre Berthelot and Arthur Ogus. F-isocrystals and de Rham cohomology I. Inventiones Mathematicae, 72:159–199, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Don Blasius. P-adic Hodge cycle on abelian varieties. in preparation.Google Scholar
  5. [5]
    Robert Coleman. On the Frobenius matrices of Fermat curves. This volume.Google Scholar
  6. [6]
    Robert Coleman. The Gross-Koblitz formula. Advanced Studies in Pure Mathematics, 12:21–52, 1987.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Ehud de Shalit. On monomial relations between p-adic periods. Journal für die Reine und Angewandte Mathematik (Crelle), 374:193–207, 1987.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Pierre Deligne. Théorème de Lefschetz et critères de dégénéscence de suites spectrales. Publications Mathématiques de l'I.H.E.S., 35:107–126, 1968.CrossRefzbMATHGoogle Scholar
  9. [9]
    Pierre Deligne. Théorie de Hodge II. Publications Mathématiques de l'I.H.E.S., 40:5–57, 1972.CrossRefzbMATHGoogle Scholar
  10. [10]
    Pierre Deligne. Valeurs de fonctions L et périodes d'intégrales. Proceedings of Symposia in Pure Mathematics, 33(part 2):313–346, 1979.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Pierre Deligne. Hodge cycles on Abelian varieties. In Hodge Cycles, Motives, and Shimura Varieties, volume 900 of Lecture Notes in Mathematics. Springer Verlag, 1982.Google Scholar
  12. [12]
    Gerd Faltings. Crystalline cohomology and p-adic galois representations. To appear in the American Journal of Mathematics.Google Scholar
  13. [13]
    Jean-Marc Fontaine. Sur certains types de représentations p-adiques du groupe de Galois d'un corps local, construction d'un anneau de Barsotti-Tate. Annals of Mathematics, 115:529–577, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Jean-Marc Fontaine and William Messing. P-adic periods and p-adic étale cohomology. In Current Trends in Arithmetical Algebraic Geometry, volume 67 of Contemporary Mathematics. American Mathematical Society, 1985.Google Scholar
  15. [15]
    Benedict Gross. On the periods of Abelian integrals and a formula of Chowla and Selberg. Inventiones Mathematicae, 45:193–211, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Neal Koblitz and Arthur Ogus. Algebraicity of some products of values of the γ-function. Proceedings of Symposia in Pure Mathematics, 33:343–346, 1979. (Appendix to “Valeurs de Fonctions L et Périodes d'Intégrales” by P. Deligne).zbMATHGoogle Scholar
  17. [17]
    Arthur Ogus. Hodge cycles and crystalline cohomology. In Hodge Cycles, Motives, and Shimura Varieties, volume 900 of Lecture Notes in Mathematics. Springer Verlag, 1982.Google Scholar
  18. [18]
    Tetsuji Shioda and Toshiyuki Katsura. On Fermat varieties. Tohoku Mathematical Journal, 31(1):97–115, 1979.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Arthur Ogus
    • 1
  1. 1.University of CaliforniaBerkeley

Personalised recommendations