Advertisement

Polyedres de Newton et poids de sommes exponentielles

  • J. Denef
  • F. Loeser
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1454)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [A-S 1]
    A. Adolphson, S. Sperber: Exponential sums and Newton polyhedra. Bull. Amer. Math. Soc. 16 (1987), 282–286.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [A-S 2]
    A. Adolphson, S. Sperber: Exponential sums and Newton polyhedra: cohomology and estimates. Annals of Math. 130 (1989), 367–406.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [A-S 3]
    A. Adolphson, S. Sperber: Exponential sums on G mn. Inventiones Math. (A paraître.)Google Scholar
  4. [B-B-D]
    A.A. Beilinson, J. Bernstein, P. Deligne: Faisceaux pervers. Société Mathématique de France, Astérisque 100 (1983).Google Scholar
  5. [B-K-Kh]
    D. Bernstein, A.G. Kushnirenko, A.G. Khovanskii: Newton polyhedra. Usp. Mat. Nauk., 31 no 3 (1976), 201–202.MathSciNetzbMATHGoogle Scholar
  6. [Da]
    V.I. Danilov: The geometry of toric varieties. Russ. Math. Surveys 33 (1978), 97–154.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [De]
    P. Deligne: La conjecture de Weil II. Publ. Math. IHES 52 (1980), 137–252.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [D-L]
    J. Denef, F. Loeser: Weights of exponential sums, intersection cohomology and Newton polyhedra. (A paraître.)Google Scholar
  9. [F]
    K.-H. Fieseler: Rational intersection cohomology of projective toric varieties. (Preprint.)Google Scholar
  10. [S]
    R. Stanley: Generalized H-vectors, intersection cohomology of toric varieties, and related results. Advanced Studies in Pure Math. 11 (1987), Commutative Algebra and Combinatorics, 187–213.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. Denef
    • 1
  • F. Loeser
    • 2
    • 3
  1. 1.Department of MathematicsUniversity of LeuvenLeuvenBelgium
  2. 2.Université Paris 6 et Ecole PolytechniqueFrance
  3. 3.Ecole PolytechniqueCentre de MathématiquesPalaiseau CedexFrance

Personalised recommendations