Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
M.F. Atiyah, R. Bott, L. Gårding: Lacunas for hyperbolic differential operators with constant coefficients, I. Acta Math. 124 (1970), 109–189.
C. Briot, J.C. Bouquet: Recherches sur les propriétés des fonctions définies par des équations différentielles. J. Ec. Imp. Polytech. 36 (1856), 133–198.
J.J. Duistermaat: Fourier Integral Operators. Lecture Notes, Courant Institute of Mathematical Sciences, New York, 1973.
F.R. de Hoog, R. Weiss: Difference methods for boundary value problems with a singularity of the first kind. SIAM J. Numer. Anal. 13 (1976), 775–813.
F.R. de Hoog, R. Weiss: On the boundary value problem for systems of ordinary differential equations with a singularity of the second kind. SIAM J. Math. Anal. 11 (1980), 41–60.
L. Hörmander: On the singularities of solutions of partial differential equations. Comm. Pure Appl. Math. 23 (1970), 329–358.
L. Hörmander: Fourier integral operators, I. Acta Math. 127 (1971), 79–183.
L. Hörmander: On the existence and regularity of solutions of linear pseudo-differential equations. Enseign. Math. 17 (1971), 99–163.
L. Hörmander: The Cauchy problem for differential equations with double characteristics. J. Analyse Math. 32 (1977), 118–196.
L. Hörmander: The analysis of linear partial differential operators III, IV. Grundlehren Math. Wiss. 274, Springer, Berlin, 1985.
V.Ja. Ivrii, V.M. Petkov: Necessary conditions for the Cauchy problem for nonstrictly hyperbolic equations to be well-posed. Russian Math. Surveys 29 (1974), 1–70.
V.Ja. Ivrii: Sufficient conditions for regular and completely regular hyperbolicity. Trans. Moscow. Math. Soc. 33 (1978), 1–65.
V.Ja. Ivrii: The well posedness of the Cauchy problem for non-strictly hyperbolic operators, III: The energy integral. Trans. Moscow Math. Soc. 34 (1978), 149–168.
V.Ja. Ivrii: Wave fronts of solutions of certain pseudo-differential equations. Trans. Moscow Math. Soc. 39 (1981), 49–86.
V.Ja. Ivrii: Wave fronts of solutions of certain hyperbolic pseudo-differential equations. Trans. Moscow Math. Soc. 39 (1981), 87–119.
N. Iwasaki: The Cauchy problem for effectively hyperbolic equations (a special case). J. Math. Kyoto Univ. 23 (1983), 503–562.
N. Iwasaki: The Cauchy problem for effectively hyperbolic equations (a standard type). Publ. RIMS Kyoto Univ. 20 (1984), 551–592.
N. Iwasaki: The Cauchy problem for effectively hyperbolic equations (general case). J. Math. Kyoto Univ. 25 (1985), 727–743.
N. Iwasaki: The Cauchy problem for effectively hyperbolic equations (remarks). In Hyperbolic equations and related topics, S. Mizohata ed., Kinokuniya, Tokyo, 1986, pp. 89–100.
G. Komatsu, T. Nishitani: Continuation of bicharacteristics for effectively hyperbolic operators. Proc. Japan Acad. 65 (1989), 109–112.
R.B. Melrose: Equivalence of glancing hypersurfaces. Inventiones Math. 37 (1976), 165–191.
R.B. Melrose: The Cauchy problem for effectively hyperbolic operators. Hokkaido Math. J. 12 (1983), 371–391.
T. Nishitani: Sur les opérateurs fortement hyperboliques qui ne dépendent que du temps. Sur l'inégalité d'énergie pour une classe d'opérateurs pseudo-différentiels fortement hyperbolyques. Séminaires sur les équations aux dérivées partielles hyperboliques et holomorphes, J. Vaillant, 1981–1982.
T. Nishitani: On the finite propagation speed of wave front sets for effectively hyperbolic operators. Sci. Rep. College Gen. Ed. Osaka Univ. 32:1 (1983), 1–7.
T. Nishitani: On wave front sets of solutions for effectively hyperbolic operators. Sci. Rep. College Gen. Ed. Osaka Univ. 32:2 (1983), 1–7.
T. Nishitani: A note on reduced forms of effectively hyperbolic operators and energy integrals. Osaka J. Math. 21 (1984), 643–650.
T. Nishitani: Local energy integrals for effectively hyperbolic operators, I, II. J. Math. Kyoto Univ. 24 (1984), 623–658, 659–666.
T. Nishitani: The Cauchy problem for effectively hyperbolic operators. In Non-linear variational problems, A. Marino, L. Modica, S. Spagnolo and M. De Giovanni eds., Res. Notes in Math. 127, Pitman, London, 1985, pp. 9–23.
T. Nishitani: Microlocal energy estimates for hyperbolic operators with double characteristics. In Hyperbolic equations and related topics, S. Mizohata ed., Kinokuniya, Tokyo, 1986, pp. 235–255.
T. Nishitani: Systèmes effectivement hyperboliques. In Calcul d'opérateurs et fronts d'ondes, J. Vaillant ed., Hermann, Paris, 1988, pp. 108–132.
T. Nishitani: Involutive system of effectively hyperbolic operators. Publ. RIMS Kyoto Univ. 24 (1988), 451–494.
D.L. Russell: Numerical solution of singular initial value problems. SIAM J. Numer. Anal. 7 (1970), 399–417.
S. Wakabayashi: Singularities of solutions of the Cauchy problem for symmetric hyperbolic systems. Comm. Partial Differential Equations 9 (1984), 1147–1177.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1991 Springer-Verlag
About this chapter
Cite this chapter
Nishitani, T. (1991). The effectively hyperbolic Cauchy problem. In: The Hyperbolic Cauchy Problem. Lecture Notes in Mathematics, vol 1505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0090884
Download citation
DOI: https://doi.org/10.1007/BFb0090884
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55018-1
Online ISBN: 978-3-540-46655-0
eBook Packages: Springer Book Archive