Abstract
Let Ω be a bounded and regular domain of ℝN, and Γ be its boundary.
For positive λ we consider the problem
.
There exists a maximum value λ* of the parameter λ with 0<λ*<+∞, such that (0.1)λ has at least one solution u in H 10 (Ω) ∩ L∞ (Ω), for λ ≥ [0,λ*[. Moreover, if the dimension N is less than 10, there exists a unique solution u* ε H 10 (Ω) ∩ L∞ (Ω) of problem (0.1)λ*, and the point (λ*,u*) is then a turning point.
In this paper, we study the variation of this turning point with respect to the open set Ω, and more precisely we give an expression of the derivative of the turning point with respect to Ω (in a sense which is correctly defined in def. 2.1).
In problem (0.1)λ we could have considered more general 2nd order elliptic operators and other types of positive increasing and convex nonlinearities, but for simplicity's sake we shall restrict ourselves to the particular problem stated above.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Bibliographie
C. BANDLE Existence theorems, qualitative results and a priori bounds for a class of non linear Dirichlet problems. Arch. Rat. Mech. Anal. Vol. 49 (1973), pp. 241–269.
J. CEA-A. GIOAN-J. MICHEL Quelques résultats sur l'identification de domaine. Calcolo Vol. 10, 3–4, (1973), pp. 208–232.
M.G. CRANDALL-P.H. RABINOWITZ Some continuation and variational methods for positive solutions of non linear elliptic eigenvalue problems. Arch. Rat. Mech. Anal. Vol. 58 (1975), pp. 207–218.
P.R. GARABEDIAN-M. SCHIFFER Convexity of domain functionals. J. d'Analyse Math., 2, (1952–53), pp. 281–368.
J. HADAMARD Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées, (1907). Oeuvres de J. HADAMARD, Vol. 2, Ed. du CNRS, Paris (1968).
D.D. JOSEPH and T.S. LUNDGREN Quasilinear Dirichlet problems driven by positive sources. Arch. Rational Mech. Anal. Vol. 49 (1973), pp. 241–269.
A.M. MICHELETTI Metrica per famiglie di domini limitati e proprieta generiche degli autovalori. Ann. Sc. Norm. Sup. Pisa 26 (3) (1972), pp. 683–694.
F. MIGNOT-J.P. PUEL Sur une classe de problèmes non linéaires avec non linéarité positive croissante convexe. Comptes-rendus du Congrés d'Analyse non linéaire, Rome, (mai 1978). A paraître.
F. MURAT-J. SIMON Etude de problèmes d'optimal design. Proceedings of the 7 th IFIP Conférence, Nice, Sept 75, Part 2. Lecture Notes in Computer Sciences no 41, Springer Verlag (1976), pp. 54–62.
Sur le contrôle par un domaine géométrique. Publication no 76 015 du Laboratoire d'Analyse Numérique de l'Université Paris VI (déc. 76).
L. SCHWARTZ Analyse mathématique. Cours professé à l'Ecole Polytechnique de Paris-Hermann, Paris (1967).
J. SIMON Dérivation par rapport à un domaine d'équations posées sur le domaine ou sur son bord. A paraître.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1980 Springer-Verlag
About this paper
Cite this paper
Mignot, F., Murat, F., Puel, J.P. (1980). Variation d'un point de retournement par rapport au domaine. In: Bardos, C., Lasry, J.M., Schatzman, M. (eds) Bifurcation and Nonlinear Eigenvalue Problems. Lecture Notes in Mathematics, vol 782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0090435
Download citation
DOI: https://doi.org/10.1007/BFb0090435
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-09758-7
Online ISBN: 978-3-540-38637-7
eBook Packages: Springer Book Archive