Skip to main content

Some applications of the method of super and subsolutions

  • Conference paper
  • First Online:
Bifurcation and Nonlinear Eigenvalue Problems

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 782))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. S. Agmon, A. Douglis and L. Nirenberg: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions; Comm. Pure and Applied Math. 12 (1959) p. 623–727 Part. I.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ambrosetti and P.H. Rabinowitz: Dual variational methods in critical point theory and applications; J. Funct. Anal. 14 (n°4) (1973) p. 349–381. Cf. also P.H. Rabinowitz: Variational methods for non-linear eigenvalue problems in Eigenvalues of non-linear problems, C.I.M.E. lecture notes, Ed. Cremonese, Roma 1974.

    Article  MathSciNet  MATH  Google Scholar 

  3. D.G. Aronson and L.A. Peletier: Large time behaviour of solutions of the porous media equation. To appear.

    Google Scholar 

  4. H. Berestycki et P.L. Lions: Existence d'ondes solitaires dans des problèmes non-linéaires du type Klein-Gordon. C.R.A.S. Paris-Ser. A. 287 (1978) p.503–506.

    MathSciNet  MATH  Google Scholar 

  5. H. Berestycki and P.L. Lions: Existence of a ground state in non linear equations of the type Klein-Gordon. To appear in Variational Inequalities Ed. Gianessi, Cottle, Lions, J. Wiley, New-York.

    Google Scholar 

  6. H. Berestycki and P.L. Lions: A local approach to the existence of solitary waves for nonlinear Klein-Gordon equations.

    Google Scholar 

  7. H. Berestycki and P.L. Lions: Existence of solitary waves in non linear Klein-Gordon equations. Part I: The ground state. Part II: Existence of infinitely many bound states. To appear.

    Google Scholar 

  8. H. Berestycki and P.L. Lions: Existence d'ondes solitaires dans des problèmes non linéaires du type Klein-Gordon. C.R.A.S. Paris 288 (1979) p. 395–398.

    MathSciNet  MATH  Google Scholar 

  9. C.M. Brauner and B. Nicolaenko: See their contribution in this volume.

    Google Scholar 

  10. H. Brézis and P.L. Lions: To appear in Bull. U.M.I.

    Google Scholar 

  11. A.M. Il'in, A.S. Kalashnikov and O.A. Oleinik: Linear equations of the second order of parabolic type. Russian Math. Surveys 17 (1962) n°3, p. 1. — 143.

    Article  ADS  MATH  Google Scholar 

  12. N.V. Krylov: Control of a solution of a stochastic integral equation. th. Proba. Appl. Vol. XVII. n°1 (1972), p. 114–131.

    Article  MATH  Google Scholar 

  13. P.L. Lions: Contrôle de diffusions dans IRn. To appear.

    Google Scholar 

  14. P.L. Lions: Problèmes elliptiques du 2ème ordre non sous forme divergences. To appear in Proc. Roy. Sec. Edim.

    Google Scholar 

  15. P.L. Lions and J.L. Menaldi: Control of stochastic equations and Bellman equations. To appear. See also: Problèmes de Bellman avec le contrôle dans les coefficients de plus haut degré. C.R.A.S. Paris série A, 287, (1978), p. 409–412.

    MathSciNet  MATH  Google Scholar 

  16. S.I. Pohozaev: Eigen functions of the equation Δu+Λf(u)=0. sov. Math. Pokl. S (1965) p. 1408–1411.

    MathSciNet  Google Scholar 

  17. P.H. Rabinowitz: Pairs of positive solutions of non linear elliptic partial differential equations, Indiana Univ. Math. J. 23 (1973/74), p. p. 173–186.

    Article  MathSciNet  MATH  Google Scholar 

  18. A.F. Rañada. and L. Vásquez: Kinks and the Heisenberg un certainty principle. To appear in Phys. Rev. D.

    Google Scholar 

  19. W.A. Strauss: Existence of solitary wares on higher dimensions. Comm. Math. Phys. 55 (1977), p. 149–162.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. D.W. Stroock and S.R.S. Varadhan: On degenerate elliptic-parabolic operators of second order and their associated diffusions. Comm. Pure Appl. Maths. 25 (1972), p. 651–713.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. Bardos J. M. Lasry M. Schatzman

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this paper

Cite this paper

Berestycki, H., Lions, P.L. (1980). Some applications of the method of super and subsolutions. In: Bardos, C., Lasry, J.M., Schatzman, M. (eds) Bifurcation and Nonlinear Eigenvalue Problems. Lecture Notes in Mathematics, vol 782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0090426

Download citation

  • DOI: https://doi.org/10.1007/BFb0090426

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09758-7

  • Online ISBN: 978-3-540-38637-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics