Eddy solutions of the navier-stokes equations

  • Owen Walsh
General Qualitative Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1530)


Stream Function Invariant Manifold Large Basis Stream Line Stokes Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. BERKER, Intégration des equations d'un fluide visqueux incompressible, Handbuch der Physik, Vol. 8/2, Springer-Verlag, Berlin, 1963, pp. 1–384.Google Scholar
  2. [2]
    G.I. Taylor, On the decay of vortices in a viscous fluid., Phil. Mag., (6) 46, (1923), pp. 671–674.CrossRefzbMATHGoogle Scholar
  3. [3]
    C. FOIAS & J.C. SAUT, Asymptotic behavior, as t → + ∞ of solutions of Navier-Stokes equations and nonlinear spectral manifolds, Ind. Univ. Math. J., 33, No. 3(1984), 459–477.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    C. FOIAS & J.C. SAUT, On the smoothness of the nonlinear manifolds associated to the Navier-Stokes equations, Ind. Univ. Math. J., 33, No. 6(1984), 911–926.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    L.H. HUA, Introduction to Number Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Owen Walsh

There are no affiliations available

Personalised recommendations