Decomposition of solenoidal fields into poloidal fields, toroidal fields and the mean flow. Applications to the boussinesq-equations

  • Burkhard J. Schmitt
  • Wolf von Wahl
General Qualitative Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1530)


Hilbert Space Fourier Coefficient Selfadjoint Operator Rigid Boundary Periodic Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Backus, G.: A Class of Self-Sustaining Dissipative Spherical Dynamos. Ann. Physics4 (1958), 372–447.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Backus, G.: Poloidal and Toroidal Fields in Geomagnetic Field Modeling. Rev. Geophys.24 (1986), 75–109.ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    Clever, R.M., Busse, F.H.: Three-dimensional knot convection in a layer heated from below. J. Fluid Mech.198 (1989), 345–363.ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    Iooss, G.: Théorie Non Linéaire de la Stabilité des Ecoulements Laminaires dans le Cas de “l'Echange des Stabilités”. Arch. Rational Mech. Anal.40 (1971), 166–208.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Joseph, D.D.: Stability of Fluid Motions, Vol. I. Springer Tracts in Natural Philosophy 27. Springer: Berlin, Heidelberg, New York (1976).Google Scholar
  6. [6]
    Wahl, W. von: The Boussinesq-Equations in Terms of Poloidal and Toroidal Fields and the Mean Flow. Lecture Notes. To appear in Bayreuth. Math. Schr.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Burkhard J. Schmitt
    • 1
  • Wolf von Wahl
    • 1
  1. 1.Lehrstuhl für Angewandte MathematikUniversität BayreuthBayreuthGermany

Personalised recommendations