Advertisement

Estimates in C2l,l for solution of a boundary value problem for the nonstationary stokes system with a surface tension in boundary condition

  • Il'ia Mogilevskii
General Qualitative Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1530)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.Sh. Mogilevskii, V.A. Solonnikov, On the solvatibility of a free boundary problem for the Navier-Stokes equations in the Hölder space of functions. Nonlinear Analysis, Pisa, 1991, p.257–271.Google Scholar
  2. 2.
    V A. Solonnikov, Estimates of solutions of an initial-boundary value problem for linear nonstationary system of the Navier-Stokes equations. Zap. nauchn. sem. LOMI, 1976, v. 59, p. 178–254 (in Russian)=Journ. Sov. Math. 1978, v. 10, p. 336–393.MathSciNetGoogle Scholar
  3. 3.
    V.A. Solonnikov, Estimates of solutions of a nonstationary linearized Navier-Stokes system of equations. Proc. Steklov Math. Inst. v. 70, 1964, p. 213–317. (in Russian).MathSciNetGoogle Scholar
  4. 4.
    O.A. Ladyzhenskaja, N.N. Uraltseva, Linear and quasilinear equations of elliptic type. Moscow, 1973 (in Russian).Google Scholar
  5. 5.
    I.Sh. Mogilevskij, V.A. Solonnikov, Solvability of a non-coercive initial-boundary value problem for the Stokes equation in Hölder spaces (the case of half-space). Zeitschrift für Analysis und ihre Anwendungen, 1989, Bd. 8, Hf. 4, p. 330–347 (in Russian).zbMATHGoogle Scholar
  6. 6.
    O.A. Ladyzhenskaja, V.A. Solonnikov, N.N. Uraltseva, Linear and quasilinear equations of parabolic type. Moskow, 1967 (in Russian).Google Scholar
  7. 7.
    V.A. Solonnikov, Unsteady motion of a finite mass of fluid bounded by a free surface. Zap. nauchn.semin. LOMI, 1986, v. 152, p. 137–157, (in Russian)=Journ. Sov. Math., 1988, v. 40, N. 5, p.672–686.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Il'ia Mogilevskii
    • 1
  1. 1.Department of mathematicsTver UniversityTverRussia

Personalised recommendations