Advertisement

Analysis of the spectral lagrange-galerkin method for the navier-stokes equations

  • Endre Süli
  • Antony F. Ware
Numerical Methods
Part of the Lecture Notes in Mathematics book series (LNM, volume 1530)

Keywords

Nonlinear Stability Spectral Element Method Material Derivative Spectral Galerkin Method Mixed Finite Element Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Douglas, J., Jr. and Russell, T.F. (1982). Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal., 19:871–885.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Ho, L.-W., Maday, Y., Patera, A., and Ronquist, E. M. (1989). A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations. ICASE Report, 89–57.Google Scholar
  3. [3]
    López-Marcos, J. and Sanz-Serna, J. (1987). Stability and convergence in numerical analysis III: Linear investigation of nonlinear stability. IMA J. Numer. Anal., 8: 71–84.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Morton, K. W., Priestley, A., and Süli, E. (1988). Stability of the Lagrange-Galerkin method with non-exact integration. RAIRO M 2 AN, 22:123–151.zbMATHGoogle Scholar
  5. [5]
    Pironneau, O. (1982). On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math., 38:309–332.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Süli, E. (1985). Lagrange-Galerkin mixed finite element approximation of the Navier-Stokes equations. In Numerical Methods for Fluid Dynamics, Morton, K. W. and Baines, M. J., Eds., pp. 439–448. Oxford University Press.Google Scholar
  7. [7]
    Süli, E. (1988). Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math., 53:459–483.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Süli, E. (1988). Stability and convergence of the Lagrange-Galerkin method with non-exact integration. In The Mathematics of Finite Elements and Applications VI, Whiteman, J. R., Ed., pp. 435–442. Academic Press.Google Scholar
  9. [9]
    Süli, E. and Ware, A. (1991). A spectral method of characteristics for first-order hyperbolic eqautions. SIAM J. Numer. Anal., 28:423–445.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Süli, E. and Ware, A. (1989). A spectral Lagrange-Galerkin method for the Navier-Stokes equations: convergence and non-linear stability. Oxford University Computing Laboratory Report, 89/10.Google Scholar
  11. [11]
    Temam, R. (1983). Navier-Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia.Google Scholar
  12. [12]
    Ware, A.F. (1991). A spectral Lagrange-Galerkin method for convection-diffusion problems. D.Phil. Thesis, University of Oxford.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Endre Süli
    • 1
  • Antony F. Ware
    • 1
  1. 1.Oxford University Computing LaboratoryOxford

Personalised recommendations