Advertisement

Some results on the asymptotic behaviour of solutions to the Navier-Stokes equations

  • Maria E. Schonbek
Problems In Unbounded Domains
Part of the Lecture Notes in Mathematics book series (LNM, volume 1530)

Keywords

Weak Solution Heat Equation Exterior Domain Suitable Weak Solution Comparison Argument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Caffarelli, R. Kohn and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math XXXV (1982) 771–831.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Kayikiya and T. Miyakawa. On the L 2 decay of weak solutions of the Navier-Stokes equations in ℝn. Math. Z. 192 (1986) 135–148.MathSciNetCrossRefGoogle Scholar
  3. [3]
    P. Galdi, P. Maremonti. Navier-Stokes equations in exterior domains. Archive for Rational Mechanics 94 (1986) 253–266.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    T. Kato. Non-stationary flows of viscous and ideal fluids in ℝ3. Journal of Functional Analysis 9 (1972) 295–305.CrossRefGoogle Scholar
  5. [5]
    J. Leray. Sur le mouvement d'une liquide visqueux complissent l'espace. Acta Math 63, 1934, 193–248.MathSciNetCrossRefGoogle Scholar
  6. [6]
    M. E. Schonbek, L 2 decay for weak solutions of the Navier-Stokes equations, Archive for Rational Mechanics and Analysis, Vol. 88, 3, 1985, pp. 209–222.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. E. Schonbek. Large time behavior of solutions to the Navier-Stokes equations, Comm. in P.D.E. 11(7) (1986) 753–763.MathSciNetCrossRefGoogle Scholar
  8. [8]
    M. E. Schonbek. Lower bounds of rates of decay for solutions to the Navier-Stokes equations. Journal of American Mathematical Society, July 1991.Google Scholar
  9. [9]
    M. E. Schonbek. Asymptotic behaviour of solutions to the three-dimensional Navier-Stokes equation. Preprint.Google Scholar
  10. [10]
    Temam. Navier-Stokes Equations, Theory and Numerical Analysis. North Holland, Amsterdam and NY. 1972.Google Scholar
  11. [11]
    M. Wiegner. Decay results for weak solutions of the Navier-Stokes equations in ℝn. J. London Math Soc. 35 (1987) 303–313.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Wiegner. Some remarks concerning the approximation of weak solutions in exterior domains for n=3,4. Private communication.Google Scholar
  13. [13]
    M. von Wahl. The equations of Navier-Stokes and abstract parabolic equations. Aspects of Mathematics (Viewig-Verlag 1985).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Maria E. Schonbek
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaSanta Cruz

Personalised recommendations