Heat-conducting fluids with free surface in the case of slip-condition on the walls

  • Michael Wolff
Free Boundary Problems
Part of the Lecture Notes in Mathematics book series (LNM, volume 1530)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kondratjev, V.A.: Boundary value problems for elliptic equations in domains with conical and regular points.-Trudy Moskov. Mat. Obsc. 16(1967), 209–292 (in Russian).MathSciNetGoogle Scholar
  2. [2]
    Kröner, D.: Asymptotische Entwicklungen von Flüssigkeiten mit freiem Rand und dynamischem Kontaktwinkel.-Preprint no. 806(1986), SFB 72, Universität Bonn.Google Scholar
  3. [3]
    Lagunova, M.V.: On solvability of the plane problem of thermo-capillary convektion.-Probl. Mat. Ana. 10(1986), 33–47(in Russian), Leningrad State university.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Sattinger, D.H.: On the free surface of a viscous fluid motion.-Proc. R. Soc. London A 349(1976), 183–204.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Socolowsky, J.: Solvebility of stationary problems of the plane motion of two viscous incompressible liquids with non-compact free boudary.-to appear in ZAMM 71(9)(1991).Google Scholar
  6. [6]
    Socolowsky, J, Wolff, M.: On some model problems in flow problems with contact angles.-to appear in ZAMMGoogle Scholar
  7. [7]
    Solonnikov, V.A.: On the Stokes equations in domains with non-smooth boundaries and on viscous incompressible flow with a free surface.-in "Nonlinear partial differential equations and their applications. College de France, Seminar", vol. 3(1983), 340–423, Ed.: H. Brezis, J.L. Lions.Google Scholar
  8. [8]
    Wolff, M.: Mathematische Untersuchungen gewisser Klassen einfacher Flüssigkeiten mit teilweise freier Oberfläche.-Berlin, Humboldt-Universität, Sektion Mathematik, Diss. A.Google Scholar
  9. [9]
    Wolff, M.: Stationary flow of heat-conducting fluids with free surface between concentric cylinders.-Berlin, Humboldt-Universität, Sektion Mathematik, Seminarbericht Nr. 99(1988).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Michael Wolff
    • 1
  1. 1.Humboldt-Universität Berlin Fachbereich MathematikBerlin

Personalised recommendations