Advertisement

Evolution free boundary problem for equations of motion of viscous compressible barotropic liquid

  • V. A. Solonnikov
  • A. Tani
Free Boundary Problems
Part of the Lecture Notes in Mathematics book series (LNM, volume 1530)

Keywords

Free Boundary Problem Finite Time Interval Velocity Vector Field Compressible Liquid Viscous Incompressible Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bemelmans, J., Gleichgewichtsfiguren mit Oberflächenspannung. Analysis, 1 (1981), 241–282MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Bemelmans, J., On a free boundary problem for the sationary Navier-Stokes equations. Ann. Inst. H.Poincarè (6) vol 4. (1987), p. 517–547MathSciNetzbMATHGoogle Scholar
  3. [3]
    Golovkin, K.K., On equivalent norms for fractional spaces. Proc. Inst. Math. Steklov, 66 (1962), 364–383; Amer. Math. Soc. Translations, (2) 81, 257–280MathSciNetGoogle Scholar
  4. [4]
    Hölder, E., Gleichgewichtsfiguren rotierender Flüssigkeiten mit Oberflächenspannung. Math.Zeitschrift, 25 (1926), 188–208.CrossRefzbMATHGoogle Scholar
  5. [5]
    Matsumura, A., Nishida, T., Initial-boundary value problems for the equations of motion of general fluids. Proc. V Intern. Symp. on Computing methods, Versailles, Dec. 14–18 (1981), 389–406.Google Scholar
  6. [6]
    Secchi, P., On the motion of gaseous stars in the presence of radiation. Comm. PDE, 15 (1990), 185–204.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Secchi, P., On the unequeness of motion of viscous gaseous stars. Math. Meth. Appl. Sci., 13 (1990), 391–404MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Secchi, P, Valli, A. A free boundary problem for compessible viscous flouid, Journ. Reine Angew. Math., 341 (1983), 1–31.MathSciNetGoogle Scholar
  9. [9]
    Slobodetskii, L.N., Generalized S.L Sobolev spaces and their application to boundary value problems for partial differential equations, Sci. comm. Lening. Ped.Inst.Herzen, 197 (1958), 54–112, Amer. Math. Soc. Translations, (2) 57, 207–275Google Scholar
  10. [10]
    Sobolev, S.L, Applications of functional analysis in mathematical physics, Leningrad 1950, 255p.Google Scholar
  11. [11]
    Solonnikov, V.A., A priori estimates for second order parabolic equations, Proc. Math. Inst. Steklov, 70 (1964), 133–212; Amer. Math. Soc. Translations, (2) 65, 51–137MathSciNetzbMATHGoogle Scholar
  12. [12]
    Solonnikov, V.A., Solvability of a problem on a motion of a viscous incompressible liquid bounded by a free surface, Izvestia Acad. Sci. USSR., 41 (1977), 1388–1424.MathSciNetGoogle Scholar
  13. [13]
    Solonnikov, V.A., On a nonstationary motion of a finite liquid mass bounded by a free surface. Zapiski nuchn. Semin. LOMI, 152 (1986), 137–157zbMATHGoogle Scholar
  14. [14]
    Solonnikov, V.A., On a nonstationary motion of a isolated mass of a viscous incompressible fluid. Izvestia Acad. Sci. USSR, 51 (1987), 1065–1087.Google Scholar
  15. [15]
    Solonnikov, V.A., On a nonstationary motion of a finite isolated mass of self-gravitating fluid. Algebra and analysis, 1 (1989), 207–246.MathSciNetzbMATHGoogle Scholar
  16. [16]
    Solonnikov, V.A., Solvability of initial-boudary value problem for equations of motion of a viscous compressible barotropic fluid in the spaces W 22+l,1+l/2 (Q T), Zapiski nauchn. semin. LOMI, to appearGoogle Scholar
  17. [17]
    Solonnikov, V.A., Tani, A., Free boundary problem for the compressible Navier-Stokes equations with the surface tension. Zapiski nauchn. semin. LOMI, (182) (1990), 142–148Google Scholar
  18. [18]
    Solonnikov, V.A., Tani, A., Free boundary problem for a viscous compressible flow with the surface tension. Constantin Caratheodory: an international tribute, Th.M.Rassias (editor), World Sci. Publ., 1991, 1270–1303.Google Scholar
  19. [19]
    Soloonikov, V.A., Tani, A., Equilibrium figures of slowly rotating viscous compressible barotropic capillary liquid. Advances in math.sciences, to appear.Google Scholar
  20. [20]
    Tani, A., On the free boundray problem for compressible vicous fluid motion. Journ. Math. Kyoto Univ., 21 (1981), 839–859MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • V. A. Solonnikov
    • 1
  • A. Tani
    • 2
  1. 1.St. Petersburg Branch of V.A. Steklov Mathematical Institute of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Department of Mathematics, Faculty of science and technologyKeio UniversityYokohamaJapan

Personalised recommendations