Advertisement

On a free boundary problem for the stationary navier-stokes equations with a dynamic contact line

  • Jürgen Socolowsky
Free Boundary Problems
Part of the Lecture Notes in Mathematics book series (LNM, volume 1530)

Keywords

Free Surface Plane Motion Rigid Wall Dynamic Contact Free Boundary Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dussan V.,E.B., Davis, S.H.: On the motion of a fluid-fluid inter-face along a solid surface. J. Fluid Mech. 65, 71–95(1974)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Kondrat'ev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obshch. 16, 209–292(1967)MathSciNetGoogle Scholar
  3. 3.
    Kröner, D.: Asymptotische Entwicklungen für Strömungen von Flüssigkeiten mit freiem Rand und dynamischem Kontaktwinkel. SFB-72 Preprint 809, Bonn, 1–105(1986)Google Scholar
  4. 4.
    Kröner, D.: Asymptotic expansions for a flow with a dynamic contact anale. In: The Navier-Stokes equations. Theory and numerical methods/ed. by J. Heywood, K. Masuda, R. Rautmann and V.A. Solonnikov. Lecture Notes Math. 1431, Springer-V., 1990, 49–59Google Scholar
  5. 5.
    Lowndes, J.: The numerical simulation of the steady movement of a fluid meniscus in a capillary tube. J. Fluid Mech. 101, 631–646 (1980)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Pileckas, K.: Solvability of a problem of plane motion of a viscous incompressible fluid with noncompact free boundary. Diff. Equ. Appl. Inst. of Math. Cybern. Acad. Sci. Lit. SSR 30, 57–96 1981 (in Russian)zbMATHGoogle Scholar
  7. 7.
    Silliman, W.J., Scriven, L.E.: Separating flow near a static contact line: Slip at a wall and shape of a free surface. J. Comput. Phys. 34, 287–313(1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Socolowsky, J.: Mathematische Untersuchungen freier Randwertaufgaben der Hydrodynamik viskoser Flüssigkeiten. Habilitation thesis, Merseburg 1989Google Scholar
  9. 9.
    Socolowsky, J.: Solvability of a stationary problem on the plane motion of two viscous incompressible liquids with non-compact free boundaries. Z. Angew. Math. Mech. (ZAMM) 71 (1991), 9 (in press), Zap. Nauchn. Sem. LOMI 163, 146–153(1987) (in Russian)Google Scholar
  10. 10.
    Socolowsky, J.: The solvability of a free boundary problem for the Navier-Stokes equations with a dynamic contact line. (1991, to be submitted)Google Scholar
  11. 11.
    Socolowsky, J.: Elementary investigations of the equation for a free surface. Techn. Mechanik 12 (1991), 4 (in press)Google Scholar
  12. 12.
    Solonnikov, V.A.: Solvability of the problem of plane motion of a heavy viscous incompressible capillary liquid partially filling a container. Izv. Akad. Nauk SSSR 43, 203–236(1979) (in Russian), [English transl.: Math. USSR-Izv. 14, 193–221(1980)]MathSciNetGoogle Scholar
  13. 13.
    Solonnikov, V.A.: On the Stokes equation in domains with nonsmooth boundaries and on a viscous incompressible flow with a free surface. Nonlinear partial diff. equations and their applications, College de France Seminar 3, 340–423, 1980/1981MathSciNetGoogle Scholar
  14. 14.
    Verfürth, R.: Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50, 697–721(1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Jürgen Socolowsky

There are no affiliations available

Personalised recommendations