Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Bratteli, O., Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–234.
Gierz, G., K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, A Compendium of Continuous Lattices, Springer-Verlag Berlin-Heidelberg-New York, 1980.
Hofmann, K. H., Some remarks on the spectral theory of C*-algebras, Tagungsbericht 31-1979, Mathematisches Forschungsinstitut Oberwolfach, pp.13, 14.
—, CL-projective limits of distributive continuous lattices are distributive, Seminar on Continuity in Semilattices 54, 2-29-80.
Hofmann, K. H. and K. Keimel, Bemerkungen zum "Neuen Lemma", Seminar on Continuity in Semilattices 52, 11-6-1979.
Hofmann, K. H. and J. D. Lawson, The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246 (1978), 285–310.
Hofmann, K. H. and J. Thayer, Almost finite dimensional C*-algebras, Dissertationes Math. 1980, to appear.
Hofmann, K. H. and F. Watkins, A new lemma on primes and a topological characterization of the category DCL of continuous Heyting algebras and CL-morphisms, Seminar on Continuity in Semilattices 51, 30-5-1979.
Isbell, J., Direct limits of meet continuous lattices, Preprint 1980.
—, MC direct limits, Seminar on Continuity in Semilattices 55, 3-19-80.
Editor information
Rights and permissions
Copyright information
© 1981 Springer-Verlag
About this paper
Cite this paper
Hofmann, K.H., Watkins, F. (1981). The spectrum as a functor. In: Banaschewski, B., Hoffmann, RE. (eds) Continuous Lattices. Lecture Notes in Mathematics, vol 871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0089909
Download citation
DOI: https://doi.org/10.1007/BFb0089909
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-10848-1
Online ISBN: 978-3-540-38755-8
eBook Packages: Springer Book Archive