Skip to main content

Strong shape theory

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 870))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. W. Anderson, Fibrations and geometric realizations, Bull. Amer. Math. Soc. 84(5) (1978), 765–788.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. J. Ball and R. Sher, A theory of proper shape for locally compact metric spaces, Fund. Math. 86(1974), 163–192.

    MathSciNet  MATH  Google Scholar 

  3. F. W. Bauer, A characterization of movable compacta, J. Reine Angew Math. 293/294 (1977), 394–417.

    MathSciNet  MATH  Google Scholar 

  4. K. Borsuk, Theory of Shape, Monografie Matematycne 59 Warsawa, 1975.

    Google Scholar 

  5. A. K. Bousfield and D.M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer, Berlin-Heidelberg-New York, 1973.

    MATH  Google Scholar 

  6. A. Calder and H.M. Hastings, Realizing strong shape equivalences, J. of Pure and Applied Algebra (to appear).

    Google Scholar 

  7. F. Cathey, Strong shape theory, Ph.D. thesis, University of Washington, 1979.

    Google Scholar 

  8. T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76(1972), 181–193.

    MathSciNet  MATH  Google Scholar 

  9. T. A. Chapman and L. Siebenmann, Finding a boundary for a Hilbert cube manifold, Acta. Mathematica 137(1976), 171–208.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. E. Christie, Net homotopy for compacta, Trans. Amer. Math. Soc. 56(1944), 275–308.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Cohen, Inverse limits of principal fibrations, Proc. London Math. Soc. (3) 27(1973), 178–192.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Dold, Geometric cobordism and the fixed point transfer, in Vancouver, Lecture Notes in Math. 673, Springer, Berlin-Heidelberg-New York (1977), 32–87.

    Google Scholar 

  13. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.

    MATH  Google Scholar 

  14. J. Dydak and J. Segal, Strong shape theory, Dissertationes Mathematica, (to appear).

    Google Scholar 

  15. A. Deleanu and P. Hilton, Generalized shape theory, in General topology and its relations to modern analysis and algebra IV, ed.,-J. Novak, Lecture Notes in Math. 609, Springer, Berlin-Heidelberg-New York (1977), 59–65.

    Chapter  Google Scholar 

  16. D. A. Edwards and H.M. Hastings, Cech and Steenrod homotopy theory, with applications to geometric topology, Lecture Notes in Math. 542, Springer, Berlin-Heidelberg-New York, 1976.

    Book  MATH  Google Scholar 

  17. _____ and _____, Every weak proper homotopy equivalence is weakly properly homotopic to a proper homotopy equivalence, Trans. Amer. Math. Soc. (to appear).

    Google Scholar 

  18. S. Ferry, A stable converse to the Victoris-Smale theorem with applications to shape theory, Trans. Amer. Math. Soc. 261(2)(1980), 369–386.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik 35, Springer, Berlin-Heidelberg-New York, 1967.

    Book  MATH  Google Scholar 

  20. J. Grossman, Homotopy classes of maps between pro-spaces, Mich. Math. J. 21 (1974), 355–362.

    MathSciNet  MATH  Google Scholar 

  21. H. M. Hastings and J. Hollingsworth, Shape equivalences, CE-equivalences, and the Siebenmann obstruction, Topology and its Applications (to appear).

    Google Scholar 

  22. A. Heller, Completions in abstract homotopy theory, Trans. Amer. Math. Soc. 147(1970), 573–602.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. J. Hilton, An introduction to homotopy theory, Cambridge Univ. Press (43), 1953.

    Google Scholar 

  24. Y. Kodama and J. Ono, On fine shape theory, Fund. Math. 105(1979), 29–39.

    MathSciNet  MATH  Google Scholar 

  25. Y. Kodama and A. Koyama, Hurewicz isomorphism theorem for Steenrod homology, Proc. Amer. Math. Soc. 74(2) (1979), 363–367.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Kozlowski, Images of ANR's, Trans. Amer. Math. Soc. (to appear).

    Google Scholar 

  27. J. T. Lisica, Exactness of sequences of spectral homotopy grsups for shape theory, Soviet Math. Dok. 18 (5) (1977), 1186–1190.

    MathSciNet  MATH  Google Scholar 

  28. M. Moszynska, On shape and fundamental deformation retracts II, Fund. Math. 77 (1973), 235–240.

    MathSciNet  MATH  Google Scholar 

  29. _____, The Whitehead Theorem in the theory of shapes, Fund. Math. 80 (1973), 221–263.

    MathSciNet  MATH  Google Scholar 

  30. S. Nowak, Some properties of the fundamental dimension, Fund. Math. 85(1974), 211–227.

    MathSciNet  MATH  Google Scholar 

  31. L. S. Pontrjagin, Topological groups, Princeton Univ. Press, 1939.

    Google Scholar 

  32. J. Quigley, An exact sequence from the nth to the (n-1)st fundamental group, Fund. Math. 77(1973), 195–210.

    MathSciNet  MATH  Google Scholar 

  33. D. G. Quillen, Homotopical algebra, Lecture Notes in Math. 43, Springer, Berlin-Heidelberg-New York, 1967.

    MATH  Google Scholar 

  34. H. Schubert, Categories, Springer, Berlin-Heidelberg-New York, 1972.

    Book  MATH  Google Scholar 

  35. L. C. Siebenmann, Infinite simple homotopy types, Indag. Math. 32,(1970), 479–495.

    Article  MathSciNet  MATH  Google Scholar 

  36. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  37. N. E. Steenrod, Regular cycles on compact metric spaces, Ann. of Math. (2) 41(1940), 833–851.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Strøm, The homotopy category is a homotopy category, Arch. Math. (Basel) 23 (1973), 435–441.

    Article  MathSciNet  MATH  Google Scholar 

  39. _____, Note on cofibrations II, Math. Scand. 22(1968), 130–142.

    MathSciNet  MATH  Google Scholar 

  40. R. M. Vogt, On the dual of a lemma of Milnor, Proc. Adv. Study Inst. Alg. Top., Aarhus Universitet, Denmark, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sibe Mardešić Jack Segal

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Cathey, F. (1981). Strong shape theory. In: Mardešić, S., Segal, J. (eds) Shape Theory and Geometric Topology. Lecture Notes in Mathematics, vol 870. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0089717

Download citation

  • DOI: https://doi.org/10.1007/BFb0089717

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10846-7

  • Online ISBN: 978-3-540-38749-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics