Skip to main content

The dilogarithm and extensions of Lie algebras

Part of the Lecture Notes in Mathematics book series (LNM,volume 854)

Keywords

  • Exact Sequence
  • Riemann Surface
  • Line Bundle
  • Heisenberg Group
  • Central Extension

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Partially supported by the NSF

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0089515
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-38646-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bloch, S., Higher regulators, Algebraic K-theory, and zeta functions of elliptic curves, lecture notes, U.C. Irvine.

    Google Scholar 

  2. _____, Algebraic K-theory and zeta functions of elliptic curves, ICM, Helsinki, 1978.

    Google Scholar 

  3. _____, Appliations of the dilogarithm function in algebraic K-theory and algebraic geometry, Intl. Symp. on Algebraic Geometry, Kyoto (1977) 103–114.

    Google Scholar 

  4. _____, Lecture Notes on Algebraic Cycles, Duke University Lecture notes in mathematics IV, (1979).

    Google Scholar 

  5. _____, K2 of artinian Q-algebras, with aplications to algebraic cycles, Comm. in Algebra 3 (1975) 405–428.

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. _____, and Ogus, A., Gersten's conjecture and the homology of schemes, Ann. Ec. Norm. Sup. t. 7, fasc. 2 (1974).

    Google Scholar 

  7. Cartier, P., Théorie des groupes, fonctions théta, et modules des variétés abeliennes, Sem. Bourbaki, no. 338 (1968).

    Google Scholar 

  8. Deligne, P., Le Symbole modéré handwritten notes, dated July 25, 1979.

    Google Scholar 

  9. Garland, H., Dedekind's η-function and the cohomology of infinite-dimentional lie algebras, Proc. Nat. Acad. Sc. (U.S.A.) Vol. 72 (1975) 2493–2495.

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. _____, and Lepowsky, J., Lie algebra homology and the MacDonald-Kac formula, Inventiones Math. vol. 34 (1976) 37–76.

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Katz, N., Nilpotent connections and the monodromy theorem: appliations of a result of Turrittin, Publ. Math. I.H.E.S. 39(1970).

    Google Scholar 

  12. Lepowsky, J., Generalized verma modules, loop space cohomology, and MacDonald-type identities, Ann. Ec. Norm. Sup. 4e serie, t. 12, (1979) 169–234.

    MathSciNet  MATH  Google Scholar 

  13. Maazen, H., and Stienstra, J., A presentation for K2 of split radical pairs preprint no. 31, Utrecht University (1976).

    Google Scholar 

  14. Milnor, J., Introduction to Algebraic K-theory, Ann. Math. studies no. 72, Princeton University Press, Princeton (1971).

    MATH  Google Scholar 

  15. Ramakrishnan, handwritten notes on the dilogarithm.

    Google Scholar 

  16. Tate, J., On the torsion in K2 of fields, Algebraic Number Theory Symposium, Kyoto (1976).

    Google Scholar 

  17. van der Kallen, W.L.J., Sur le K2 des nombres duanx, C.R. Acad. Sci. Paris 273 (1974) 1204–1207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Bloch, S. (1981). The dilogarithm and extensions of Lie algebras. In: Friedlander, E.M., Stein, M.R. (eds) Algebraic K-Theory Evanston 1980. Lecture Notes in Mathematics, vol 854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0089515

Download citation

  • DOI: https://doi.org/10.1007/BFb0089515

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10698-2

  • Online ISBN: 978-3-540-38646-9

  • eBook Packages: Springer Book Archive