Advertisement

On the representation of solutions of stochastic differential equations

  • Hiroshi Kunita
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 784)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Doss, H: Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré 13, 99–125(1977).MathSciNetzbMATHGoogle Scholar
  2. [2]
    Ichihara, K-Kunita, H: A classification of the second order degenerate elliptic operators and its probabilistic characterization, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 30, 235–254(1974).MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Ichihara, K-Kunita, H: Supplements and corrections to the above paper, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 39, 81–84(1977).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Itô, K: Stochastic differentials, Appl. Math. Optimization 1, 374–384(1975).MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Jacobson, N: Lie algebras, New York-London. Wiley 1962.zbMATHGoogle Scholar
  6. [6]
    Palais, R. S: A global formulation of the Lie theory on transformation groups, Memoirs of the American Mathematical Society, No. 22 (1957).Google Scholar
  7. [7]
    Sussman, H. J: On the gap between deterministic and stochastic ordinary differential equations, The Annals of Probability 6, 19–41(1978).MathSciNetCrossRefGoogle Scholar
  8. [8]
    Yamato, Y: Stochastic differential equations and nilpotent Lie algebras, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 47, 213–229(1979).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Hiroshi Kunita
    • 1
  1. 1.Department of Applied Science Faculty of EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations