A Banach-Steinhaus theorem for weak and order continuous operators

  • H. H. Schaefer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1422)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fremlin, D.H.: Topological Riesz Spaces and Measure Theory. Cambridge University Press, Cambridge, 1974.CrossRefzbMATHGoogle Scholar
  2. [2]
    Köthe, G.: Topological Vector Spaces, I. Springer, New York, 1969.zbMATHGoogle Scholar
  3. [3]
    Luxemburg, W.A.J. and Zaanen, A.C.: Notes on Banach Function Spaces, VI–VII. Proc. Nederl. Acad. Wetensch. (A) 66 (1963), 655–681.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Luxemburg, W.A.J. and Zaanen, A.C.: Riesz Spaces, I. North Holland, Amsterdam-London, 1971.zbMATHGoogle Scholar
  5. [5]
    Räbiger, F.: Beiträge zur Strukturtheorie der Grothendieck-Räume. Sitz. Ber. Heidelberger Akad. Wiss. Nr. 4 (1985), Springer.Google Scholar
  6. [6]
    Schaefer, H.H.: Topological Vector Spaces. GTM 3, 5th printing, Springer, New York, 1986.zbMATHGoogle Scholar
  7. [7]
    Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, New York, 1974.CrossRefzbMATHGoogle Scholar
  8. [8]
    Schaefer, H.H.: Dual Characterization of Order Continuity and Some Applications. Archiv d. Math. 49 (1988).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • H. H. Schaefer
    • 1
  1. 1.Mathematisches Institut der Eberhard-Karls-UniversitätTübingen

Personalised recommendations