Advertisement

A Banach-Steinhaus theorem for weak and order continuous operators

  • H. H. Schaefer
Conference paper
  • 310 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1422)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fremlin, D.H.: Topological Riesz Spaces and Measure Theory. Cambridge University Press, Cambridge, 1974.CrossRefzbMATHGoogle Scholar
  2. [2]
    Köthe, G.: Topological Vector Spaces, I. Springer, New York, 1969.zbMATHGoogle Scholar
  3. [3]
    Luxemburg, W.A.J. and Zaanen, A.C.: Notes on Banach Function Spaces, VI–VII. Proc. Nederl. Acad. Wetensch. (A) 66 (1963), 655–681.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Luxemburg, W.A.J. and Zaanen, A.C.: Riesz Spaces, I. North Holland, Amsterdam-London, 1971.zbMATHGoogle Scholar
  5. [5]
    Räbiger, F.: Beiträge zur Strukturtheorie der Grothendieck-Räume. Sitz. Ber. Heidelberger Akad. Wiss. Nr. 4 (1985), Springer.Google Scholar
  6. [6]
    Schaefer, H.H.: Topological Vector Spaces. GTM 3, 5th printing, Springer, New York, 1986.zbMATHGoogle Scholar
  7. [7]
    Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, New York, 1974.CrossRefzbMATHGoogle Scholar
  8. [8]
    Schaefer, H.H.: Dual Characterization of Order Continuity and Some Applications. Archiv d. Math. 49 (1988).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • H. H. Schaefer
    • 1
  1. 1.Mathematisches Institut der Eberhard-Karls-UniversitätTübingen

Personalised recommendations