Quasiconformal mappings on CR manifolds

  • Adam Korányi
  • Hans Martin Reimann
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1422)


Heisenberg Group Quasiconformal Mapping Contact Structure Contact Form Real Hypersurface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4 References

  1. [1]
    T. Akahori. A new approach to the local embedding theorem of CR structures for n ≥ 4. Memoirs of the Amer. Math. Soc.366 (1987).Google Scholar
  2. [2]
    E. Cartan. Sur la géometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes. Annali di Matematica11 (1932), 17–90. (Oeuvres II, 1231–1304).MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. S. Chern & J. Moser. Real hypersurfaces in complex manifolds. Acta Math.133 (1974), 219–271.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Faraut. Analyse harmonique et fonctions spéciales. In Deux cours d'analyse harmonique: École d'été d'analyse harmonique de Tunis, 1984. Birkhäuser, 1987.Google Scholar
  5. [5]
    G. B. Folland & E. M. Stein. Estimates for the \(\bar \partial _b\) complex and analysis on the Heinsenberg group. Comm. Pure Appl. Math.27 (1974), 429–522.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. C. Greiner. On the Laguerre calculus of left-invariant convolution operators on the Heisenberg group. Exposé XI, Séminaire Goulaouic-Meyer-Schwartz (1980–81).Google Scholar
  7. [7]
    P. C. Greiner, J. J. Kohn, & E. M. Stein. Necessary and sufficient conditions for the solvability of the Lewy equation. Proc. Nat. Acad. of Sciences, USA72 (1975), 3287–3289.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. Jacobowitz & F. Trèves. Nonrealizable CR structures. Inventiones Math.66 (1982), 231–249.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. J. Kohn. Boundaries of complex manifolds. In Proc. Conf. Complex Analysis 1964, Mineapolis. Springer-Verlag, 1965.Google Scholar
  10. [10]
    A. Korányi & H. M. Reimann. Quasiconformal mappings on the Heisenberg group. Inventiones Math.80 (1985), 309–338.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Korányi & S. Vági. Singular integrals on homogeneous spaces and some problems of classical analysis. Annali Norm. Sup. Pisa25 (1971), 575–648.MathSciNetzbMATHGoogle Scholar
  12. [12]
    M. Kuranishi. Strongly pseudoconvex CR structures on small balls I, II, III. Ann. Math.115 (1982), 451–500; 116 (1982), 1–64; 116 (1982), 249–330, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    L. Nirenberg. Lectures on linear partial differential equations, CMBS 17. Providence, RI: Amer. Math. Soc., 1973.CrossRefzbMATHGoogle Scholar
  14. [14]
    S. Webster. Pseudo-Hermitian structures on a real hypersurface. J. Diff. Geom.13 (1978), 25–41.MathSciNetzbMATHGoogle Scholar
  15. [15]
    ___. Analytic discs and the regularity of CR mappings of real submanifolds. Proc. Symp. in Pure Math. 41 (1984), 199–208.MathSciNetCrossRefGoogle Scholar
  16. [16]
    ___. On the proof of Kuranishi's embedding theorem. Preprint.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Adam Korányi
    • 1
  • Hans Martin Reimann
    • 2
  1. 1.Lehman College and Graduate CenterCity University of New YorkUSA
  2. 2.University of BernSwitzerland

Personalised recommendations