The meromorphic continuation of Kloosterman-Selberg zeta functions

  • J. W. Cogdell
  • I. I. Piatetski-Shapiro
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1422)


Irreducible Representation Modular Form Fourier Coefficient Parabolic Subgroup Eisenstein Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G, Preprint.Google Scholar
  2. 2.
    J.W. Cogdell, J.-S. Li, I.I. Piatetski-Shapiro and P. Sarnak, Poincaré series for SO(n, 1), In preparation.Google Scholar
  3. 3.
    R. Godement, Notes on Jacquet-Langlands Theory, Lecture Notes, I.A.S..Google Scholar
  4. 4.
    N.V. Kuznetsov, Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums, Math. USSR Sbornik 39 (1981), 299–342.CrossRefzbMATHGoogle Scholar
  5. 5.
    A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Symp. Pure Math VIII, A.M.S., Providence, R.I. (1965), 1–15.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    N.R. Wallach, Asymptotic expansions of generalized matrix entries of representations of real reductive groups. Lie Group Representations I., Lecture Notes in Mathematics 1024, 287–369.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. W. Cogdell
    • 1
  • I. I. Piatetski-Shapiro
    • 2
    • 3
  1. 1.Department of MathematicsOklahoma State UniversityStillwater
  2. 2.Department of MathematicsYale UniversityNew Haven
  3. 3.School of Mathematics, The Raymond and Beverly Sackler Faculty of Exact SciencesTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations