Mathematical problems in the theory of quantum chaos

  • Ya. G. Sinai
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1469)


Weak Limit Geodesic Flow Quantum Chaos Diagonal Operator Poisson Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.V. Berry and M. Tabor. Proc. Roy. Soc. A 349 (1976), 101–123.MathSciNetCrossRefGoogle Scholar
  2. 2.
    L.D. Landau, E.M. Lifschitz. Quantum Mechanics.Google Scholar
  3. 3.
    Ya.G. Sinai, Poisson Distribution in a Geometrical Problem. Advances in Soviet Mathematics, Publications of AMS (in press).Google Scholar
  4. 4.
    G. Casati, B.V. Chirikov, J. Ford, F.M. Izraelev, in: Stochastic Behaviour in Classical and Quantum Hamiltonian Systems, eds., G. Casati, J. Ford. Lecture Notes in Physics, 93, Springer-Verlag, p. 334–352.Google Scholar
  5. 5.
    V.F. Lazutkin, Convex Billiard and Eigenfunctions of the Laplace Operator, Publ. Leningrad University, Leningrad, 1981, 196pp. (in Russian).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Ya. G. Sinai
    • 1
  1. 1.Landau Institute for Theoretical PhysicsAcademy of SciencesMoscowUSSR

Personalised recommendations