Advertisement

S1-actions on almost complex manifolds

  • K. H. Mayer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 838)

Keywords

Vector Bundle Complex Manifold Normal Bundle Chern Class Double Covering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Atiyah, M. F. and Hirzebruch, F.: Spin-manifolds and group actions. In Essays on topology and related topics (Berlin-Heidelberg, New York, Springer-Verlag, 1970, pp. 18–28).CrossRefGoogle Scholar
  2. [2]
    Atiyah, M. F. and Singer I. M.: The index of elliptic operators I, Ann. of Math. 87 (1968), 484–530.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Atiyah, M. F. and Singer I. M.: The index of elliptic operators III, Annals of Math. 87 (1968), 546–604.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Hattori, A.: Spinc-structures and S1-actions. Inventiones math. 48, (1978), 7–31.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Hirzebruch, F.: Topological methods in algebraic geometry, Berlin, Heidelberg, New York, Springer-Verlag, 1966.CrossRefzbMATHGoogle Scholar
  6. [6]
    Kosniowski, C.: Applications of the holomorphic Lefschetz formulae. Bull. London Math. Soc. 2 (1970), 43–148.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Mayer, K. H.: Elliptische Differentialoperatoren und Ganzzahligkeitssätze für charakteristische Zahlen. Topology 4 (1965), 295–313.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Mayer, K. H.: A remark on Lefschetz formulae for modest vector bundles. Math. Ann. 216 (1975), 143–147.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Mayer, K. H. and Schwarzenberger, R. L. E.: Lefschetz formulae for modest vector bundles. Proc. Camb. Phil. Soc. 73, (1973), 439–453.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Schwarz, W.: Spezielle G-äquivariante Differentialoperatoren, ein Charaktersatz und Anwendungen. Bonner Mathematische Schriften Nr. 59 (1972).Google Scholar
  11. [11]
    Su, J. C.: Transformation groups on cohomology projective spaces. Trans. Amer. Math. Soc. 106 (1963), 305–318.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • K. H. Mayer
    • 1
  1. 1.Universität DortmundGermany

Personalised recommendations