Skip to main content

A plateau problem with many solutions for boundary curves in a given knot class

  • 704 Accesses

Part of the Lecture Notes in Mathematics book series (LNM,volume 838)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böhme, R.: A Plateau problem with many solutions. To appear in Arch. Rat.Mech.Anal. 1980

    Google Scholar 

  2. Böhme, R. and Tromba, A.J.: The index theorem for classical minimal surfaces. Preprint series of SFB 72 in Bonn, vol. 146, 1978, and to appear in Ann.Math.

    Google Scholar 

  3. Hörmander, L.: Linear partial differential operators. Berlin-Heidelberg-New York. Springer: 1963

    Book  MATH  Google Scholar 

  4. Nitsche, J.C.C.: A new uniqueness theorem for minimal surfaces. Arch.Rat.Mech.Anal. 52, (1973), 319–329.

    Article  MathSciNet  MATH  Google Scholar 

  5. Nitsche, J.C.C.: Vorlesungen über Minimalflächen. Berlin-Heidelberg-New York, Springer: 1975

    Book  MATH  Google Scholar 

Download references

Authors

Editor information

Dirk Ferus Wolfgang Kühnel Udo Simon Bernd Wegner

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Böhme, R. (1981). A plateau problem with many solutions for boundary curves in a given knot class. In: Ferus, D., Kühnel, W., Simon, U., Wegner, B. (eds) Global Differential Geometry and Global Analysis. Lecture Notes in Mathematics, vol 838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0088840

Download citation

  • DOI: https://doi.org/10.1007/BFb0088840

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10285-4

  • Online ISBN: 978-3-540-38419-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics