Laplacian and riemannian submersions with totally geodesic fibres

  • L. Berard Bergery
  • J. P. Bourguignon
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 838)


Vector Field Riemannian Manifold Canonical Variation Holonomy Group Riemannian Submersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BBB]
    L. BERARD BERGERY et J.P. BOURGUIGNON, Laplacian and submersions (to appear).Google Scholar
  2. [HE]
    R. HERMANN, A sufficient condition that a mapping of Riemannian manifolds be a fiber bundle, Proc. Amer. Math. Soc. 11 (1960) p. 236–242.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [HÖ]
    L. HÖRMANDER, Hypoelliptic second order differential equations, Acta Math. 119 (1967) p. 147–171.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [MU]
    H.MUTO and H.URAKAWA, On the least positive eigenvalue of Laplacian on compact homogeneous spaces, preprint Tôhoku University.Google Scholar
  5. [ON]
    B. O’NEILL, The fundamental equations of a submersion, Michigan Math. J. 13 (1966) p. 459–469.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [TA]
    S. TANNO, The first eigenvalue of the Laplacian on spheres, Tôhoku Math. J. 31 (1979) p. 179–185.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [UR]
    H. URAKAWA, On the least eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979) p. 209–226.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • L. Berard Bergery
    • 1
  • J. P. Bourguignon
    • 2
  1. 1.UER de MathématiquesUniversité de Nancy 1Nancy CedexFrance
  2. 2.Centre de Mathématiques Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations