Some remarkable martingales

  • D. W. Stroock
  • M. Yor
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 850)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. DUBINS, G. SCHWARZ: On extremal martingale distributions. Proc. 5th. Berkeley Symp. Math. Stat. Prob., Univ. California II, part I, 1967, p. 295–299.Google Scholar
  2. [2]
    P.A. MEYER: Un cours sur les intégrales stochastiques. Sém. Probas. Strasbourg X, Lect. Notes in Maths 511, Springer (1976).Google Scholar
  3. [3]
    S. NAKAO: On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations. Osaka J. Math., 9, 1972, p. 513–518.MathSciNetzbMATHGoogle Scholar
  4. [4]
    C. STRICKER, M. YOR: Calcul stochastique dépendant d'un paramètre. Zeitschrift für Wahr., 45, 1978, p. 109–134.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D.W. STROOCK, S.R.S. VARADHAN: Multidimensional diffusion processes. Springer-Verlag Grundlehren Series, Vol. 233, 1979, N.Y.C.Google Scholar
  6. [6]
    D.W. STROOCK, M. YOR: On extremal solutions of martingale problems. Ann. Ecole Norm. Sup, 1980, 13, p. 95–164.MathSciNetzbMATHGoogle Scholar
  7. [7]
    S. WATANABE, T. YAMADA: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, (1971), p. 155–167.MathSciNetzbMATHGoogle Scholar
  8. [8]
    J.M. HARRISON, L.A. SHEPP: On skew Brownian Motion. To appear in Annals of Probability.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • D. W. Stroock
    • 1
  • M. Yor
    • 2
  1. 1.University of ColoradoUSA
  2. 2.Université Pierre et Marie CurieFrance

Personalised recommendations