Williams' characterisation of the Brownian excursion law: proof and applications

  • L. C. G. Rogers
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 850)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    AZEMA, J., YOR, M. Une solution simple au problème de Skorokhod. Séminaire de Probabilités XIII, SLN 721, Springer (1979).Google Scholar
  2. [2]
    ITÔ, K. Poisson point processes attached to Markov processes. Proc. 6th Berkeley Symposium Math. Statist. and Prob. Univ. of California Press (1971).Google Scholar
  3. [3]
    JEULIN, T., YOR, M. Lois de certaines fonctionelles du mouvement Brownien et de son temps Local. Séminaire de Probabilités XV (1981).Google Scholar
  4. [4]
    KNIGHT, F.B. On the sojourn times of killed Brownian motion. Séminaire de Probabilités XII, SLN 649, Springer (1978).Google Scholar
  5. [5]
    LEHOCZKY, J. Formulas for stopped diffusion processes with stopping times based on the maximum. Ann. Probability 5 pp. 601–608 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    PIERRE, M. Le problème de Skorokhod; Une remarque sur la démonstration d'Azéma-Yor. Séminaire de Probabilités XIV, SLN 784, Springer (1980).Google Scholar
  7. [7]
    TAYLOR, H.M. A stopped Brownian motion formula. Ann. Probability 3 pp.234–246 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    WILLIAMS, D. Path decomposition and continuity of local time for one-dimensional diffusions. Proc. London Math. Soc. (3) 28 pp.738–768 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    WILLIAMS, D. On a stopped Brownian motion formula of H.M. Taylor. Séminaire de Probabilités X, SLN 511, Springer (1976).Google Scholar
  10. [10]
    WILLIAMS, D. The Itô excursion law for Brownian motion. (unpublished — but see §II.67 of Williams' book ‘Diffusions,Markov processes, and martingales’ (Wiley, 1979).)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • L. C. G. Rogers
    • 1
  1. 1.University College of SwanseaUK

Personalised recommendations