Some extensions of Ito's formula

  • Hiroshi Kunita
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 850)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. M. Bismut; Flots stochastiques et formula de Ito-Stratonovich généralisée, C. R. Acad. Sci. Paris 290 (10 mars 1980).Google Scholar
  2. [2]
    N. Ikeda-S. Watanabe; Stochastic differential equations and diffusion processes, forthcoming book.Google Scholar
  3. [3]
    K. Itô; The Brownian motion and tensor fields on Riemannian manifold, Proc. Internat. Congress of Math. Stockholm (1962).Google Scholar
  4. [4]
    K. Itô; Stochastic parallel displacement, Springer, Lecture Notes in Math., 451 (1975), 1–7.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Kobayashi-K. Nomizu; Foundations of differential geometry I, Interscience 1963.Google Scholar
  6. [6]
    H. Kunita; On the representation of solutions of stochastic differential equations, Séminaire des Probabilités XIV, Lecture Notes in Math., 784 (1980), 282–303.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    H. Kunita; On the decomposition of solutions of stochastic differential equations, to appear in the proceedings of Durham conference on stochastic integrals.Google Scholar
  8. [8]
    H. Kunita-S. Watanabe; On square integrable martingales, Nagoya Math. J., 30 (1967), 209–245.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Watanabe; Differential and variation for flow of diffeomorphisms defined by stochastic differential equation on manifold (in Japanese). Sūkaiken Kōkyuroku 391 (1980).Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Hiroshi Kunita
    • 1
  1. 1.Department of Applied ScienceKyushu UnivFukuokaJapan

Personalised recommendations