Une remarque sur un théorème de Bourgain

  • Dominique Schneider
  • Michel Weber
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1557)


  1. [B]
    Bourgain, J.Almost sure convergence and bounded entropy. Israël J. of Math., V. 63, p. 79–87, (1988).MathSciNetCrossRefMATHGoogle Scholar
  2. [Du]
    Dudley, R.M.The size of compact subsets in Hilbert spaces and continuity of Gaussian processes. J. Functional analysis, V1, p. 290–330 (1967).Google Scholar
  3. [F]
    Fernique, X.Gaussian Random Vectors and their reproducing Kernel Hilbert spaces. Tech. rep. no 34, Univ. of Ottawa, (1985).Google Scholar
  4. [H]
    Halàsz, K.Remarks on the remainder in Birkhoff's ergodic theorem. Acta Math. Acad. Sci Hungar. 28, p. 389–395, (1978).CrossRefMATHGoogle Scholar
  5. [K]
    Krengel, U.Ergodic theorems. W. de Gruyter, studies in Mathematics 6, (1985).Google Scholar
  6. [LW]
    Ladouceur, S., Weber, M.Speed of convergence of the mean average operator for quasi-compact operators, preprint, (1991).Google Scholar
  7. [Sa]
    Sawyer, S.Maximal inequalities of weak type. Ann. Math., V. 84, p. 157–174, (1966).MathSciNetCrossRefMATHGoogle Scholar
  8. [St]
    Stein, E.M.On limits of sequences of operators. Ann. Math. V. 74, p. 140–170, (1961).CrossRefMATHGoogle Scholar
  9. [Su]
    Sudakov, V.N.Gaussian random processes and measures of solid angles in Hilbert spaces. Dokl. Akad. Nauk. S.S.S.R. V. 197, p. 43–45, (1971).MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Dominique Schneider
    • 1
  • Michel Weber
    • 1
  1. 1.Institut de Recherche Mathématique AvancéeUniversité Louis Pasteur et C.N.R.S.Strasbourg Cedex

Personalised recommendations