Rational homotopy of the space of homotopy equivalences of a flag manifold

  • Dietrich Notbohm
  • Larry Smith
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1509)


Exact Sequence Homotopy Class Maximal Torus Homotopy Equivalent Homotopy Equivalence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooke, G.E., Lifting Homotopy Actions to Topological Actions, TAMS 237 (1978), 391–406MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dold, A. and R. Thom, Unendliche symmetrischen Potenzen und Quasifaserungen, Ann. of Math 58 (1960) 234–256.Google Scholar
  3. 3.
    Hopf, H. Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen, Ann. of Math. 42 (1941), 22–52.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Milnor, J.W. and J.C. Moore, The Structure of Hopf Algebras, Annals of Math 81 (1964)Google Scholar
  5. 5.
    Moore, J.C., in Seminar Cartan 1954/55 Algèbres d'Eilenberg-MacLane et homotopie, Exposé 19 Theorem 6., W.A. Benjamin Inc. New York 1967.Google Scholar
  6. 6.
    Notbohm, D. and L. Smith, Fake Lie Groups and Maximal Tori I, preprint.Google Scholar
  7. 7.
    Notbohm, D. and L. Smith, Fake Lie Groups and Maximal Tori II, preprint.Google Scholar
  8. 8.
    Notbohm, D. and L. Smith, Fake Lie Groups and Maximal Tori III, preprint.Google Scholar
  9. 9.
    Papadima, S., Rigidity properties of compact Lie groups modulo maximal Tori, Math. Ann. 275 (1986), 637–652.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Serre, J.-P., Groupes d'homotopie et classes de groupes abéliens, Annals of Math 58 (1953) 258–294.CrossRefzbMATHGoogle Scholar
  11. 11.
    Smith, L., A Note on Realizing Complete Intersection Algebras as the Cohomology of a Space, Quaterly J. of Math. Oxford 33 (1982), 379–384.CrossRefzbMATHGoogle Scholar
  12. 12.
    Smith, L., Realizing Homotopy Actions by Topological Actions II, TAMS (to appear).Google Scholar
  13. 13.
    Speerlich, T., Automorpmismen von Ringen von Koinvarianten kristalographischen Gruppen, Staatsexamensarbeit Göttingen 1190.Google Scholar
  14. 14.
    Stasheff, J.D., A classification theorem for fibre spaces, Topology 2 (1963) 239–246.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Steinberg, R., Invariants of Finite Reflection Groups, Cand. J.of Math. 12 (1960), 616–618.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Thom, R. L'Homologie des Espaces Fonctionels, Colloque de Topologie algébrique Louvain 1957.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Dietrich Notbohm
    • 1
  • Larry Smith
    • 1
  1. 1.Mathematisches InstitutGeorg August UniversitätGöttingenWest Germany

Personalised recommendations