Advertisement

Concise tables of James numbers and some homotopy of classical Lie groups and associated homogeneous spaces

  • Albert T. Lundell
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1509)

Keywords

Projective Space Symmetric Space Homogeneous Space Homotopy Group Complex Projective Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Barratt and M. Mahowald, The metastable homotopy of O(n), Bull. Amer. Math Soc. 70 (1964), 758–760.MathSciNetCrossRefzbMATHGoogle Scholar
  2. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces II, Amer. J. Math. 81 (1959), 103–119.MathSciNetCrossRefGoogle Scholar
  3. R. Bott, The stable homotopy of the classical groups, Ann. of Math. 70 (1959),313–337.MathSciNetCrossRefzbMATHGoogle Scholar
  4. R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960), 249–256.MathSciNetCrossRefzbMATHGoogle Scholar
  5. M. Crabb and K. Knapp, James numbers and the codegree of vector bundles I, II, (preprint).Google Scholar
  6. M. Crabb and K. Knapp, The Hurewicz map on stunted complex projective spaces, Amer. J. Math 110 (1988), 783–809.MathSciNetCrossRefzbMATHGoogle Scholar
  7. M. Crabb and K. Knapp, James numbers, Math. Ann. 282 (1988), 395–422.MathSciNetCrossRefzbMATHGoogle Scholar
  8. E. Curtis and M. Mahowald, The unstable Adams spectral sequence for the 3-sphere, (preprint).Google Scholar
  9. Y. Hirashima and H. Oshima, A note on stable James numbers of projective spaces, Osaka J. Math. 13 (1976), 157–161.MathSciNetzbMATHGoogle Scholar
  10. B. Harris, On the homotopy groups of the classical groups, Ann. of Math. 74 (1961),407–413.MathSciNetCrossRefzbMATHGoogle Scholar
  11. B. Harris, Some calculations of homotopy group of symmetric spaces, Trans. Amer. Math. Soc. 106 (1963), 174–184.MathSciNetCrossRefzbMATHGoogle Scholar
  12. C. Hoo and M. Mahowald, Some homotopy groups of Stiefel manifolds, Bull. Amer. Math. Soc. 71 (1965), 661–667.MathSciNetCrossRefzbMATHGoogle Scholar
  13. H. Imanishi, Unstable homotopy groups of classical groups (odd primary components), J. Math. Kyoto Univ. 7 (1968), 221–243.MathSciNetzbMATHGoogle Scholar
  14. M. Imaoka and K. Morisugi, On the stable Hurewicz image of some stunted projective spaces I, Pub. RIMS Kyoto Univ. 39 (1984), 839–852.MathSciNetCrossRefzbMATHGoogle Scholar
  15. M. Imaoka and K. Morisugi, On the stable Hurewicz image of some stunted projective spaces II, Pub. RIMS Kyoto Univ. 39 (1984), 853–866.CrossRefzbMATHGoogle Scholar
  16. M. Imaoka and K. Morisugi, On the stable Hurewicz image of some stunted projective spaces III, Mem. Fac. Sci. Kyushu Univ. 39 (1985), 197–208.MathSciNetzbMATHGoogle Scholar
  17. H. Kachi, Homotopy groups of the homogeneous space SU(n)/SO(n), J. Fac. Sci. Shinshu Univ. 13 (1978), 27–34.MathSciNetzbMATHGoogle Scholar
  18. H. Kachi, Homotopy groups of the homogeneous space Sp(n)/U(n), J. Fac. Sci. Shinshu Univ. 13 (1978), 36–41.MathSciNetzbMATHGoogle Scholar
  19. H. Kachi, Homotopy groups of symmetric spaces Γn, J. Fac. Sci. Shinshu Univ. 13 (1978), 103–120.MathSciNetzbMATHGoogle Scholar
  20. M. Kervaire, Some nonstable homotopy groups of Lie groups, Ill. J. Math. 4 (1960), 161–169.MathSciNetzbMATHGoogle Scholar
  21. K. Knapp, Some applications of K-theory to framed bordism: e-invariant and transfer, Habilitationsschrift, Bonn (1979).Google Scholar
  22. M. Mahowald, The metastable homotopy of S n, Mem. Amer. Math. Soc. 72 (1968).Google Scholar
  23. M. Mahowald, On the metastable homotopy of SO(n), Proc. Amer. Math. Soc. 19 (1968), 639–641.MathSciNetzbMATHGoogle Scholar
  24. H. Matsunaga, The homotopy groups π2n+i(U(n)) for i=3,4 and 5, Mem. Fac. Sci. Kyushu Univ. 15 (1961), 72–81.MathSciNetzbMATHGoogle Scholar
  25. H. Matsunaga, The groups π2n+7(U(n)), odd primary components, Mem. Fac. Sci. Kyushu 16 (1962), 66–74.MathSciNetzbMATHGoogle Scholar
  26. H. Matsunaga, Applications of functional cohomology operations to the calculus of π2n+i(U(n)) for i=6 and 7, n≥4, Mem. Fac. Sci. Kyushu Univ. 17 (1963), 29–62.MathSciNetzbMATHGoogle Scholar
  27. H. Matsunaga, Unstable homotopy groups of Unitary groups (odd primary components), Osaka J. Math. 1 (1964), 15–24.MathSciNetzbMATHGoogle Scholar
  28. M. Mimura, On the generalized Hopf construction and the higher composition II, J. Math. Kyoto Univ. 4 (1965), 301–326.MathSciNetGoogle Scholar
  29. M. Mimura, Quelques groupes d'homotopie metastables des espaces symetriques Sp(n) et U(2n)/Sp(n), C.R. Acad. Sci. Paris, 262 (1966), 20–21.MathSciNetzbMATHGoogle Scholar
  30. M. Mimura, Homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ. 6 (1967), 131–176.MathSciNetzbMATHGoogle Scholar
  31. M. Mimura, M. Mori and N. Oda, On the homotopy groups of spheres, Proc. Japan Acad. 50 (1974), 277–280.MathSciNetCrossRefzbMATHGoogle Scholar
  32. M. Mimura and H. Toda, The (n+20)-th homotopy groups of n-spheres, J. Math. Kyoto Univ. 3 (1963), 37–58.MathSciNetzbMATHGoogle Scholar
  33. M. Mimura and H. Toda, Homotopy groups of SU(3),SU(4) and Sp(2), J. Math. Kyoto Univ. 3 (1964), 217–250.MathSciNetzbMATHGoogle Scholar
  34. M. Mimura and H. Toda, Homotopy groups of symplectic groups, J. Math. Kyoto Univ. 3 (1964), 251–273.MathSciNetzbMATHGoogle Scholar
  35. H. Minami, A remark on odd-primary components of special unitary groups, Osaka J. Math. 21 (1984), 457–460.MathSciNetzbMATHGoogle Scholar
  36. M. Mori, Applications of secondary e-invariants to unstable homotopy groups of spheres, Mem. Fac. Sci. Kyushu Univ. 29 (1974), 59–87.MathSciNetzbMATHGoogle Scholar
  37. K. Morisugi, Homotopy groups of symplectic groups and the quaternionic James numbers, Osaka J. Math. 23 (1986), 867–880.MathSciNetzbMATHGoogle Scholar
  38. K. Morisugi, Metastable homotopy groups of Sp(n), J. Math. Kyoto Univ. 27 (1987), 367–380.MathSciNetzbMATHGoogle Scholar
  39. K. Morisugi, On the homotopy group π4n+16(Sp(n)) for n≥ 4, Bull. Fac. Ed. Wakayama Univ. (1988), 19–23.Google Scholar
  40. K. Morisugi, On the homotopy group, π8n+4(Sp(n)) and the Hopf invariant, to appear in J. Math Kyoto Univ.Google Scholar
  41. R. Mosher, Some stable homotopy of complex projective space, Topology 7 (1969), 179–193.MathSciNetCrossRefzbMATHGoogle Scholar
  42. R. Mosher, Some homotopy of stunted complex projective space, Ill. J. Math. 13 (1969), 192–197.MathSciNetzbMATHGoogle Scholar
  43. J. Mukai, The S1-transfer map and homotopy groups of suspended complex projective spaces, Math. J. Okayama Univ. 24 (1982), 179–200.MathSciNetzbMATHGoogle Scholar
  44. N. Oda, On the 2-components of the unstable homotopy groups of spheres I, Proc. Japan Acad. 53 (1977), 202–205.MathSciNetCrossRefzbMATHGoogle Scholar
  45. N. Oda, On the 2-components of the unstable homotopy groups of shperes II, Proc. Japan Acad. 53 (1977), 215–218.MathSciNetCrossRefGoogle Scholar
  46. N. Oda, Some homotopy groups of SU(3),SU(4) and Sp(2), Fukuoka Univ. Sci. Reports 8 (1978), 77–90.zbMATHGoogle Scholar
  47. N. Oda, Periodic families in the homotopy groups of SU(3),SU(4),Sp(2) and G2, Mem. Fac. Sci. Kyushu Univ. 32 (1978), 277–290.MathSciNetzbMATHGoogle Scholar
  48. S. Oka, On the homotopy groups of sphere bundles over spheres, J. Sci. Hiroshima Univ. 33 (1969), 161–195.MathSciNetzbMATHGoogle Scholar
  49. H. Ōshima, On the stable James numbers of complex projective spaces, Osaka J. Math. 11 (1974), 361–366.MathSciNetzbMATHGoogle Scholar
  50. H. Ōshima, On stable James numbers of stunted complex or quaternionic projective spaces, Osaka J. Math. 16 (1979), 479–504.MathSciNetzbMATHGoogle Scholar
  51. H. Ōshima, On the homotopy group π2n+9(U(n)) for n ≥ 6, Osaka J. Math. 17 (1980), 495–511.MathSciNetzbMATHGoogle Scholar
  52. H. Ōshima, Some James numbers of Stiefel manifolds, Proc. Camb. Phil. Soc. 92 (1982), 139–161.MathSciNetCrossRefzbMATHGoogle Scholar
  53. H. Ōshima, A homotopy group of the symmetric space SO(2n)/U(n), Osaka J. Math. 21 (1984), 473–475.MathSciNetzbMATHGoogle Scholar
  54. H. Ōshima, A remark on James numbers of Stiefel manifolds, Osaka J. Math. 21 (1984), 765–772.MathSciNetzbMATHGoogle Scholar
  55. F. Sigrist, Groupes d'homotopie des varietes de Stiefel complexes, Comment. Math. Helv. 43 (1968), 121–131.MathSciNetCrossRefzbMATHGoogle Scholar
  56. H. Toda, A topological proof of theorems of Bott and Borel-Hirzebruch for homotopy groups of unitary groups, Mem. Fac. Sci. Kyoto Univ. 32 (1959), 103–119.MathSciNetzbMATHGoogle Scholar
  57. H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies 49, Princeton University Press 1962.Google Scholar
  58. H. Toda, On homotopy groups of S3-bundles over spheres, J. Math. Kyoto Univ. 2 (1963), 193–207.MathSciNetzbMATHGoogle Scholar
  59. H. Toda, On iterated suspensions I, J. Math. Kyoto Univ. 5 (1965), 87–142.MathSciNetzbMATHGoogle Scholar
  60. H. Toda, On iterated suspensions III, J. Math. Kyoto Univ. 8 (1968), 101–130.MathSciNetzbMATHGoogle Scholar
  61. G. Walker, Estimates for the complex and quaternionic James numbers, Quart. J. Math. 32 (1981), 467–489.MathSciNetCrossRefzbMATHGoogle Scholar
  62. G. Walker, The James numbers bn, n−3 for n odd, (preprint), 1988.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Albert T. Lundell
    • 1
  1. 1.Department of MathematicsUniversity of ColoradoBoulder

Personalised recommendations