Advertisement

Réalisation topologique de certaines algèbres associées aux algèbres de Dickson

  • Alain Jeanneret
  • Ulrich Suter
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1509)

Topological realisation of certain algebras associated to the Dickson algebras

Abstract

We discuss the topological realisation of certain Z/2-algebras A(n) over the mod 2 Steenrod algebra A(2). If an associative H-space X(n) satisfies H*(X(n); Z/2)≅A(n), the mod 2 cohomology of its classifying space is isomorphic to the algebra of invariants of the canonical Gln(Z/2)-action on a graded polynomial algebra in n variables of degree 1.

Keywords

Polynomial Algebra Topological Realisation Operation Cohomologiques Steenrod Algebra Dickson Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Réferences bibliographiques

  1. [1]
    M.F. ATIYAH. Power operations in K-theory, Quart J. Math. Oxford (2) 17 (1966), 165–193.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    W.G. DWYER et C.W. WILKERSON. A new finite loop space at the prime 2, Preprint.Google Scholar
  3. [3]
    R.M. KANE. The homology of Hopf spaces, North Holland Math. Study #40 (1988).Google Scholar
  4. [4]
    J.P. LIN et F. WILLIAMS. On 14-connected finite H-spaces, Israel J. Math. 66 (1989), 274–288.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J.P. LIN et F. WILLIAMS. On 6-connected finite H-spaces with two torsion, Topology 28 (1989), 7–34.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    L. SMITH et R.M. SWITZER. Realizability and nonrealizability of Dickson Algebras as cohomology rings, Proc. Amer. Math. Soc. 89 (1983), 303–313.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Alain Jeanneret
    • 1
  • Ulrich Suter
    • 1
  1. 1.Institut de Mathématiques et d'InformatiqueUniversité de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations