Advertisement

On parametrized Borsuk-Ulam theorem for free Zp-action

  • Marek Izydorek
  • Sławomir Rybicki
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1509)

Keywords

Vector Bundle Free Action Fibre Dimension Cohomological Dimension Sphere Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [D]
    Dold, A., “Parametrized Borsuk-Ulam theorems”, Comment.Math.Helv. 63, (1988), 275–285.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [FH]
    Fadell, E.R. and Husseini, S.Y., “Cohomological index theory with applications to critical point theory and Borsuk-Ulam theorems”, Seminaire de Math. Sup. 108, Universite de Montreal, Montreal, 1989, 10–54.zbMATHGoogle Scholar
  3. [G]
    Gorniewicz, L., “Homological methods in fixed point theory for multivalued maps”, Dissertationes Math. 129, (1976), 1–71.MathSciNetGoogle Scholar
  4. [I1]
    Izydorek, M., “Nonsymetric version of Bourgin-Yang theorem for multi-valued maps and free Z p-actions”, J. Math. Anal. and Appl., vol. 137, n. 2, (1989), 349–353.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [12]
    Izydorek, M., “Remarks on Borsuk-Ulam theorem for multi-valued maps”, Bull. Acad. Sci. Pol., Math., 35, (1987), 501–504.MathSciNetzbMATHGoogle Scholar
  6. [IJ]
    Izydorek, M. and Jaworowski, J., “Parametrized Borsuk-Ulam theorems for multivalued maps”, (to appear).Google Scholar
  7. [J1]
    Jaworowski, J., “A continuous version of the Borsuk-Ulam theorem” Proc. Amer. Math. Soc. 82, (1981), 112–114.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [J2]
    Jaworowski, J., “Fibre preserving maps of sphere bundles into vector space bundles”, Proc. of the Fixed Point Theory Conference, Sherbrooke, Quebec 1980, LN in Math. 886, Springer-Verlag 1981, 154–162.Google Scholar
  9. [M1]
    Munkholm, H.J., “On the Borsuk-Ulam theorem for Z p α actions on S 2n−1 and maps S 2n−1R m”, Osaka J. Math. 7, (1970), 451–456.MathSciNetzbMATHGoogle Scholar
  10. [M2]
    Munkholm, H.J., “Borsuk-Ulam type theorems for proper Z p actions on (mod p homology) n-spheres”, Math. Scand. 24, (1969), 167–185.MathSciNetzbMATHGoogle Scholar
  11. [N1]
    Nakaoka, M., “Equivariant point theorems for fibre-preserving maps”, Osaka J. Math. 21, (1984), 809–815.MathSciNetzbMATHGoogle Scholar
  12. [N2]
    Nakaoka, M., “Proceedings of the Tianjin Fixed Point Conference 1988”, LN in Math., 1411, Springer-Verlag 1989.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Marek Izydorek
    • 1
  • Sławomir Rybicki
    • 1
  1. 1.Department of MathematicsTechnical University of GdańskGdańskPoland

Personalised recommendations