Classifying spaces of compact simple lie groups and p-tori

  • Kenshi Ishiguro
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1509)


Conjugacy Class Weyl Group Maximal Torus Steenrod Algebra Null Homotopic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Adams and Z. Mahmud, Maps between classifying spaces, Invent. Math.35 (1976), 1–41.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. F. Adams and C. W. Wilkerson, Finite H-spaces and algebras over the Steenrod algebra, Ann. of Math.111 (1980), 95–143.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Borel and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comm. Math. Helv.23 (1949), 200–221.CrossRefzbMATHGoogle Scholar
  4. 4.
    M. Curtis, A. Wiederhold and B. Williams, Normalizers of maximal tori, Lecture Notes in Math., Springer-Verlag 418 (1974), 31–47.Google Scholar
  5. 5.
    W.G. Dwyer and C.W. Wilkerson, Spaces of null homotopic maps. preprint.Google Scholar
  6. 6.
    W.G. Dwyer and C.W. Wilkerson, A cohomology decomposition theorem. preprint.Google Scholar
  7. 7.
    E. M. Friedlander, Exceptional isogenies and the classifying spaces spaces of simple Lie groups, Ann. of Math.101 (1975), 510–520.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    E.M. Friedlander and G. Mislin, Locally finite approximation of Lie groups I, Invent. Math.83 (1986), 425–436.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    E.M. Friedlander and G. Mislin, Locally finite approximation of Lie groups II, Math. Proc. Camb. Phil. Soc.100 (1986), 505–517.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    K. Ishiguro, Unstable Adams operations on classifying spaces, Math. Proc. Camb. Phil. Soc.102 (1987), 71–75.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    K. Ishiguro, Rigidity of p-completed classifying spaces of alternating groups and classical groups over a finite field. preprint.Google Scholar
  12. 12.
    S. Jackowski, J. McClure and B. Oliver, Self-maps of classifying spaces of compact simple Lie groups, Bull. A.M.S.22 no. 1 (1990), 65–71.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. Lannes, Sur la cohomologie modulo p des p-groupes Abéliens élémentaires, in “Homotopy theory, Proc. Durham Symp. 1985”, Cambridge Univ. Press (1987), 97–116.Google Scholar
  14. 14.
    H.R. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math.120 (1984), 39–87.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    D. Quillen, The spectrum of an equivariant cohomology ring I, Ann. of Math94 (1971), 549–572.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    J.-P. Serre, Sur les sous-groupes Abéliens des groupes de Lie compacts, Séminaire “Sophus Lie” Expos/'e no. 24, E.N.S. (1954/55).Google Scholar
  17. 17.
    R. Steinberg, Torsion in reductive groups, Advances in Math.15 (1975), 63–92.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    G.W. Whitehead, “Elements of Homotopy Theory”, Springer, Berlin, 1978.CrossRefzbMATHGoogle Scholar
  19. 19.
    A. Zabrodsky, Maps between classifying spaces, Annals of Math. Studies113 (1987), 228–246.MathSciNetzbMATHGoogle Scholar
  20. 20.
    J. Lannes and L. Schwartz, Sur la structure des A-modules instables injectifs, Topology28 (1989), 153–169.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Kenshi Ishiguro
    • 1
  1. 1.Department of MathematicsHofstra UniversityHempsteadU.S.A.

Personalised recommendations