Advertisement

The classification of 3-manifolds with spines related to Fibonacci groups

  • Alberto Cavicchioli
  • Fulvia Spaggiari
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1509)

Abstract

We study the topological structure of closed connected orientable 3-manifolds which admit spines corresponding to the standard presentation of Fibonacci groups.

Keywords

Fundamental Group Group Presentation Lens Space Standard Presentation Heegaard Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Brunner, The determination of Fibonacci Groups, Bull. Austral. Math. Soc. 11(1974), 11–14.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    G. Burde-H. Zieschang, Knots, Walter de Gruyter Ed., Berlin-New York, 1985.Google Scholar
  3. [3]
    A. Cavicchioli, Imbeddings of polyhedra in 3-manifolds, Annali di Mat. Pura ed Appl., to appear.Google Scholar
  4. [4]
    A. Cavicchioli, Neuwirth manifolds and colourings of graphs, to appear.Google Scholar
  5. [5]
    M. Culler-P. B. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. 117(1983), 109–146.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R. Craggs, Free Heegaard diagrams and extended Nielsen transformations, I, Michigan Math. J. 26 (1979), 161–186.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    R. Craggs, Free Heegaard diagrams and extended Nielsen transformations, II, Illinois J. of Math., 23 (1979), 101–127.MathSciNetzbMATHGoogle Scholar
  8. [8]
    M. Ferri, Crystallisations of 2-fold branched coverings of S 3, Proc. Amer. Math. Soc. 73(1979), 271–276.MathSciNetzbMATHGoogle Scholar
  9. [9]
    J. Hempel, 3-manifolds, Ann. of Math. Studies 86, Princeton Univ. Press, Princeton, New Jersey, 1976.zbMATHGoogle Scholar
  10. [10]
    D. L. Johnson, Topics in the theory of Group Presentations, London Math. Soc. Lect. Note Series 42, Cambridge Univ. Press, Cambridge-London-New York, 1980.CrossRefzbMATHGoogle Scholar
  11. [11]
    D. L. Johnson, A note on the Fibonacci Groups, Israel J. Math. 17(1974), 277–282.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    D. L. Johnson-J. W. Wamsley-D. Wright, The Fibonacci Groups, Proc. London Math. Soc. 29(1974), 577–592.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. M. Montesinos, Sobre la representación de variedades tridimensionales, Mimeographed Notes, 1977.Google Scholar
  14. [14]
    L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-complexes, Proc. Camb. Phil. Soc. 64(1968), 603–613.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P. Orlik, Seifert manifolds, Lect. Note in Math. 291, Springer-Verlag Ed., Berlin-Heidelberg-New York, 1972.zbMATHGoogle Scholar
  16. [16]
    R. Osborne, Simplifying spines of 3-manifolds, Pacific J. of Math. 74(1978), 473–480.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    R. Osborne, The simplest closed 3-manifolds, Pacific J. of Math. 74(1978), 481–495.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R. Osborne-R.S. Stevens, Group presentations corresponding to spines of 3-manifolds II, Trans. Amer. Math. Soc. 234 (1977), 213–243.MathSciNetzbMATHGoogle Scholar
  19. [19]
    D. Rolfsen, Knots and Links, Math. Lect. Series 7, Publish or Perish Inc., Berkeley, 1976.zbMATHGoogle Scholar
  20. [20]
    P. Scott, The classification of compact 3-manifolds, in “Proc. Conf. on Topology in Low Dimension, Bangor 1979”, London Math. Soc. Lect. Note Series 48, Cambridge Univ. Press, Cambridge-London-New York (1982), 3–7.Google Scholar
  21. [21]
    J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35(1933), 88–111.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    R. S. Stevens, Classification of 3-manifolds with certain spines, Trans. Amer. Math. Soc. 205(1975), 151–166.MathSciNetzbMATHGoogle Scholar
  23. [23]
    M. Takahashi, On the presentations of the fundamental groups of 3-manifolds, Tsukuba J. Math. 13(1989), 175–189.MathSciNetzbMATHGoogle Scholar
  24. [24]
    R. M. Thomas, The Fibonacci Groups F(2, 2m), Bull. London Math. Soc. 21(1989), 463–465.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    R. M. Thomas, Some infinite Fibonacci Groups, Bull. London Math. Soc. 15(1983), 384–386.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87(1968), 56–88.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Alberto Cavicchioli
    • 1
  • Fulvia Spaggiari
    • 1
  1. 1.Dipartimento di MatematicaUniversitá di ModenaModenaItaly

Personalised recommendations