An algorithm for finding closed orbits

  • J. H. Curry
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 819)


Periodic Solution Initial Guess Closed Orbit Lorenz System Unstable Periodic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lanford, O., private communication.Google Scholar
  2. 2.
    Hirsch, M. W., and S. Smale, 1979: Algorithms for solving f(x)=0. Comm. Pure and Appl. Math., 32, 313–357.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kellogg, R. B., T. Li and J. A. Yorke, 1976: A constructive proof of the Brouwer fixed-point theorem. SIAM J. Numer. Anal., 13, 473–383.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Robbins, K. A., 1979: preprint.Google Scholar
  5. 5.
    Dahlquist, G., and A. Bjorck, 1969: Numerical Methods, Prentice-Hall.Google Scholar
  6. 6.
    Hartman, P., 1973: Ordinary differential equations.Google Scholar
  7. 7.
    Lorenz, E. N., 1963: Nonperiodic flow. J. Atmos. Sci., 20, pp. 130–141.ADSCrossRefGoogle Scholar
  8. 8.
    Williams, B., 1979: IHES Publication (to appear).Google Scholar
  9. 9.
    Marsden, Chorin and S. Smale, 1977: Berkeley Turbulence Seminar, Springer Lecture Notes in Mathematics.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. H. Curry
    • 1
    • 2
  1. 1.National Center for Atmospheric ResearchUSA
  2. 2.Department of MeteorologyMassachusetts Institute of TechnologyUSA

Personalised recommendations