Advertisement

Positively expansive maps of compact manifolds

  • Ethan M. Coven
  • William L. Reddy
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 819)

Keywords

Invariant Measure Compact Manifold Topological Entropy Uniform Continuity Deck Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    H. Bohr and W. Fenchel, Ein Satz über stabile Bewegungen in der Ebene, Danske Vid. Selsk. Mat.-Fys. Medd. 14 (1936), 1–15.zbMATHGoogle Scholar
  2. 2.
    Reprinted in Collected Mathematical Works of Harald Bohr, vol. II, Danish Mathematical Society, Copenhagen, 1952.Google Scholar
  3. 2a.
    R. Bowen, On Axiom A Diffeomorphisms, CBMS Regional Conference Series in Mathematics, no. 35, Amer. Math. Soc., Providence, R.I., 1978.Google Scholar
  4. 3.
    P. F. Duvall and L. S. Husch, Analysis on topological manifolds, Fund. Math. 77 (1972), 75–90.MathSciNetzbMATHGoogle Scholar
  5. 4.
    M. Eisenberg, Expansive transformation semigroups of endomorphisms, Fund. Math. 59 (1969), 313–321.MathSciNetzbMATHGoogle Scholar
  6. 5.
    A. H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), 133–142.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 6.
    J. Guinez, Entropie topologique et rayon de convergence de la fonction zêta des endomorphismes dilantes des variétés compactes, C. R. Acad. Sci. Paris Sér. A 270 (1970), 1408–1411.MathSciNetzbMATHGoogle Scholar
  8. 7.
    E. Hemmingsen and W. L. Reddy, Lifting and projecting expansive homeomorphisms, Math. Systems Theory 2 (1968), 7–15.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 8.
    E. Hemmingsen and W. L. Reddy, Expansive homeomorphisms on homogeneous spaces, Fund. Math. 64 (1969), 203–207.MathSciNetzbMATHGoogle Scholar
  10. 9.
    M. Hirsch, Expanding maps and transformation groups, Proc. Sympos. Pure Math., vol. 14, 125–131. Amer. Math. Soc., Providence, R.I., 1970.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 10.
    J. L. Kelley, General Topology, Van Nostrand, Princeton, N.J., 1955.zbMATHGoogle Scholar
  12. 11.
    R. Mañe, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc. 252 (1979), 313–319.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 12.
    J. Mather, Characterization of Anosov diffeomorphisms, Nederl. Akad. Wetensch. Indag. Math. 30 (1968), 479–483.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 13.
    D. Ruelle, Thermodynamic Formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley, Reading, Mass., 1978.Google Scholar
  15. 14.
    M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175–199.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 15.
    P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. Amer. Math. Soc. 236 (1978) 121–153.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Ethan M. Coven
    • 1
  • William L. Reddy
    • 1
  1. 1.Wesleyan UniversityUSA

Personalised recommendations