Skip to main content

Methods of computing fractal dimensions

  • Conference paper
  • First Online:
Nonlinear Semigroups, Partial Differential Equations and Attractors

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1394))

Abstract

We discuss two frequently calculated fractal dimensions, the capacity and information dimension and present efficient methods for their computation for sets embedded in ℝn. In particular we show how Monte Carlo calculation of areas and volumes can be used to compute the capacity using fewer box counting operations than straightforward box counting, and we discuss an efficient implementation of the method using a very fast one-dimensional sorting algorithm. Sets embedded in ℝ2 and ℝ3 are mapped to [0,1] using a folding map φ with the property that n·dim(φ(X)) = dim(X) where X c ℝn and dim is either the Hausdorff or the capacity dimension. Thus the problem of calculating the capacity dimension or the information dimension (in the case it coincides with the Hausdorff dimension) is reduced to computing these quantities for φ(X) in [0,1].

Partially supported by NSF grant DMS-8603703.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. H. Greenside, A. Wolf, J. Swift, T. Pignataro, "The Impracticality of a Box Counting Algorithm for Calculating the Dimensionality of Strange Attractors", Phys. Rev. A25 (1982) 3453.

    Article  MathSciNet  Google Scholar 

  2. A. Cohen, I. Procaccia, "Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems," Phys. Rev. A31, (1985) 1872.

    Article  Google Scholar 

  3. M. McGuiness, "A Computation of the Limit Capacity of the Lorenz Attractor", Physica 16D (1985), 265–275.

    MathSciNet  Google Scholar 

  4. R. Badii, A. Politi, "Statistical Description of Chaotic Attractors: The Dimension Function", J. Stat. Phys., 40 (1985) 725–750.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Ott, J. Yorke, E. Yorke, "A Scaling Law: How an Attractor's Volume depends on Noise Level", preprint.

    Google Scholar 

  6. D.A. Russell, J. Hanson, E. Ott, Phys. Rev. Lett. 45 (1980), 1175.

    Article  MathSciNet  Google Scholar 

  7. L.S. Young, "Dimension entropy, and Lyapunov exponents", Erg. Th. & Dyn. Sys. 2 (1982), 109–124.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.P. Eckmann, D. Ruelle, "Ergodic Theory of Chaos and Strange Attractors" Rev. Mod. Phys. 57, (1985), 617–655.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Varosi (to appear).

    Google Scholar 

  10. B. Brooks, H. Brock, F. Sullivan, "Diamond: A Sorting Method for Vector Machines", BIT 21, (1981) 142–152.

    Article  MATH  Google Scholar 

  11. P. Billingsley, "Hausdorff Dimension in Probability THeory" Ill. J. Math 4 (1960), 187–209.

    MathSciNet  MATH  Google Scholar 

  12. P. Billingsley, Ergodic Theory and Information, John Wiley and Sons, New York, 1965.

    MATH  Google Scholar 

  13. H. Cajar, Billingsley Dimension in Probability Spaces, Lecture Notes in Mathematics no. 892, Springer-Verlag, 1981.

    Google Scholar 

  14. F.M. Dekking, "Variations on Peano", O. Arch. v. Wisk 3 (1980), 275–281.

    MathSciNet  MATH  Google Scholar 

  15. F. Hunt, F. Sullivan, "Efficient Algorithms for Computing Fractal Dimensions", in Dimensions and Entropies in Chaotic Systems, ed. G. Mayer-Kress, Springer Verlag, 1985.

    Google Scholar 

  16. W.A. Beyer, "Hausdorff dimension of level sets of some Rademacher series", Pac. J. Math. 12 (1962), 35–46.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.D. Farmer, E. Ott, J. Yorke, "The Dimension of Chaotic Attractors"; Physica 7D (1983), 153–180.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tepper L. Gill Woodford William Zachary

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Hunt, F., Sullivan, F. (1989). Methods of computing fractal dimensions. In: Gill, T.L., Zachary, W.W. (eds) Nonlinear Semigroups, Partial Differential Equations and Attractors. Lecture Notes in Mathematics, vol 1394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0086754

Download citation

  • DOI: https://doi.org/10.1007/BFb0086754

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51594-4

  • Online ISBN: 978-3-540-46679-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics