Inner invariant means and the regular conjugation representation of L1(G)

  • Chuan Kuan Yuan
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1359)


Compact Subset Topological Group Compact Group Unitary Representation Haar Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Charles A Akemann, Operator algebras associated with fuchsian groups, Houston J. Math., 7, 1981, 295–301.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Edward G. Effros, Property Γ and inner amenability, Proc. Amer. Math. Soc., 47, 1975, 483–486.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Frederick P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand, New York, 1969.zbMATHGoogle Scholar
  4. [4]
    Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis, vol. 1, 2nd., Spring-Verlag, Berlin, 1979.zbMATHGoogle Scholar
  5. [5]
    Viktor Losert and Harald Rindler, Conjugation invariant means, preprint.Google Scholar
  6. [6]
    Jean-Paul Pier, Quasi-invariant interieure sur les groupe localement compacts, Act. Math., Gauthier-Villars, Paris, 1982, 431–436.Google Scholar
  7. [7]
    Jean-Paul Pier, Amenable Locally Compact Groups, John Wiley and Sons Inc., New York, 1984.zbMATHGoogle Scholar
  8. [8]
    Jean-Paul Pier, Invariance interieure sur les gpoupes localement compacts, Rev Roumaine Math. Pures Appl. 32, 4., 1987, 375–396.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Chuan Kuan Yuan, The existence of inner invariant means on L(G), J. Math>Anal. Appl., 129, 1988. To appear.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Chuan Kuan Yuan
    • 1
  1. 1.Department of Applied MathematicsTsing Hua UniversityPekingChina

Personalised recommendations