Advertisement

Minimal C*-dense ideals and algebraically irreducible representations of the schwartz-algebra of a nilpotent lie group

  • Jean Ludwig
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1359)

Keywords

Irreducible Representation Closed Subset Unitary Representation Polynomial Growth Minimal Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Boidol, H. Leptin, J. Schürmann, D. Vahle, Räume primitiver Ideale in Gruppenalgebren, Math. Ann. 236 (1978), 1–13.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    I.D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. Ec. Norm. Sup. 6 Sér. 4 (1973), 407–411.MathSciNetzbMATHGoogle Scholar
  3. 3.
    J. Dixmier, Opérateurs de rang fini dans les représentations unitaires, Publ. Math. IHES 6 (1960), 305–317.MathSciNetzbMATHGoogle Scholar
  4. 4.
    J. Dixmier, Les C*-Algèbres et leurs représentations, Gauthier-Villars.Google Scholar
  5. 5.
    J. Dixmier, P. Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2) 102 (1978), 305–330.MathSciNetzbMATHGoogle Scholar
  6. 6.
    F. Du Cloux, Représentations temperées des groupes de Lie nilpotents, Preprint (1987).Google Scholar
  7. 7.
    F. Du Cloux, Jets de fonctions différentiables sur le dual d'un groupe de Lie nilpotent, Invent. Math. 88 (1987), 375–394.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    F.F. Bonsall, J. Duncan, Complete normed algebras, Springer-Verlag, Berlin-Heidelberg-New York (1973).zbMATHCrossRefGoogle Scholar
  9. 9.
    R. Howe, On a connection between nilpotent groups and oscillatory integrals associated to singularities, Pac. J. Math. 73 (1977), n. 2, 329–363.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups. Stud. Math. 78 (1974), 253–266.MathSciNetzbMATHGoogle Scholar
  11. 11.
    N. Jacobson, Structure of rings, third edition, Amer. Math. Soc. Coll. Publ. 37 (Providence 1968).Google Scholar
  12. 12.
    A.A. Kirillov, Unitary representations of nilpotent Lie groups, Usp. Mat. Nauk 17 (1962), 57–110.MathSciNetzbMATHGoogle Scholar
  13. 13.
    J. Ludwig, On primary ideals in the group algebra of a nilpotent Lie group, Math. Ann. 262 (1983), 287–304.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    J. Ludwig, A class of symmetric and a class of Wiener group algebras, J. Funct. Annal. 31, (1979), 187–194.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    J. Ludwig, The element of bounded trace in the C*-algebra of a nilpotent Lie group, Invent. math. 83 (1986), 167–190.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    T. Pytlik, On the spectral radius of elements in groups algebras, Bull. Acad. Polon. Sci. 21 (1973), 899–902.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Jean Ludwig
    • 1
  1. 1.Séminaire de MathématiqueCentre UniversitaireLuxembourg

Personalised recommendations